7 research outputs found

    Intrinsic synergistic-topological mechanism versus synergistic-topological matrix in microtubule self-organization

    Get PDF
    Background In this body of work we investigate the synergistic-topological relationship during self-organization of the microtubule fiber in vitro, which is composed of straight, axially shifted and non-shifted, acentrosomal microtubules under crowded conditions. Methods We used electron microscopy to observe morphological details of ordered straight microtubules. This included the observation of the differences in length distribution between microtubules in ordered and non-ordered phases followed by the observation of the formation of interface gaps between axially shifted and ordered microtubules. We performed calculations to confirm that the principle of summation of pairwise electrostatic forces act between neighboring microtubules all their entire length. Results We have shown that the self-organization of a microtubule fiber imposes a variety of topological restrictions onto its constituting components: (a) tips of axially shifted neighboring microtubules are not in direct contact but rather create an ‘interface gap’; (b) fibers are always composed of a restricted number of microtubules at given solution conditions; (c) the average length of microtubules that constitute a fiber is always shorter than that of microtubules outside a fiber; (d) the length distribution of microtubules that constitute a fiber is narrower than that of microtubules outside a fiber and this effect is more pronounced at higher GTP-tubulin concentrations; (e) a cooperative motion of fiber microtubules due to actualization of the summation principle of pairwise electrostatic forces; (f) appearance of local GTP-tubulin depletion immediately in front of the tips of fiber microtubules. Conclusion Overall our data indicate that under crowded conditions in vitro, the self-organization of a microtubule fiber is governed by an intrinsic synergistic-topological mechanism, which in conjunction with the topological changes, GTP-tubulin depletion, and cooperative motion of fiber constituting microtubules, may generate and maintain a ‘synergistic-topological matrix’. Failure of the mechanism to form biologically feasible microtubule synergistic-topological matrix may, per se, precondition tumorigenesis. © 2014 BioMed Central Lt

    Evolution of protein domain architectures

    Get PDF
    This chapter reviews current research on how protein domain architectures evolve. We begin by summarizing work on the phylogenetic distribution of proteins, as this will directly impact which domain architectures can be formed in different species. Studies relating domain family size to occurrence have shown that they generally follow power law distributions, both within genomes and larger evolutionary groups. These findings were subsequently extended to multi-domain architectures. Genome evolution models that have been suggested to explain the shape of these distributions are reviewed, as well as evidence for selective pressure to expand certain domain families more than others. Each domain has an intrinsic combinatorial propensity, and the effects of this have been studied using measures of domain versatility or promiscuity. Next, we study the principles of protein domain architecture evolution and how these have been inferred from distributions of extant domain arrangements. Following this, we review inferences of ancestral domain architecture and the conclusions concerning domain architecture evolution mechanisms that can be drawn from these. Finally, we examine whether all known cases of a given domain architecture can be assumed to have a single common origin (monophyly) or have evolved convergently (polyphyly). We end by a discussion of some available tools for computational analysis or exploitation of protein domain architectures and their evolution

    Calcium-axonemal microtubuli interactions underlie mechanism(s) of primary cilia morphological changes.

    No full text
    We have used cell culture of astrocytes aligned within microchannels to investigate calcium effects on primary cilia morphology. In the absence of calcium and in the presence of flow of media (10 μL.s-1) the majority (90%) of primary cilia showed reversible bending with an average curvature of 2.1 ± 0.9 × 10-4 nm-1. When 1.0 mM calcium was present, 90% of cilia underwent bending. Forty percent of these cilia demonstrated strong irreversible bending, resulting in a final average curvature of 3.9 ± 1 × 10-4 nm-1, while 50% of cilia underwent bending similar to that observed during calcium- free flow. The average length of cilia was shifted toward shorter values (3.67 ± 0.34 μm) when exposed to excess calcium (1.0 mM), compared to media devoid of calcium (3.96 ± 0.26 μm). The number of primary cilia that became curved after calcium application was reduced when the cell culture was pre-incubated with 15 μM of the microtubule stabilizer, taxol, for 60 min prior to calcium application. Calcium caused single microtubules to curve at a concentration ≈1.0 mM in vitro, but at higher concentration (≈1.5 mM) multiple microtubule curving occurred. Additionally, calcium causes microtubule- associated protein-2 conformational changes and its dislocation from the microtubule wall at the location of microtubule curvature. A very small amount of calcium, that is 1.45 × 1011 times lower than the maximal capacity of TRPPs calcium channels, may cause gross morphological changes (curving) of primary cilia, while global cytosol calcium levels are expected to remain unchanged. These findings reflect the non-linear manner in which primary cilia may respond to calcium signaling, which in turn may influence the course of development of ciliopathies and cancer

    Intrinsic microtubule GTP-cap dynamics in semi-confined systems: kinetochore–microtubule interface

    No full text
    In order to quantify the intrinsic dynamics associated with the tip of a GTP-cap under semi-confined conditions, such as those within a neuronal cone and at a kinetochore–microtubule interface, we propose a novel quantitative concept of critical nano local GTP-tubulin concentration (CNLC). A simulation of a rate constant of GTP-tubulin hydrolysis, under varying conditions based on this concept, generates results in the range of 0-420 s−1. These results are in agreement with published experimental data, validating our model. The major outcome of this model is the prediction of 11 random and distinct outbursts of GTP hydrolysis per single layer of a GTP-cap. GTP hydrolysis is accompanied by an energy release and the formation of discrete expanding zones, built by less-stable, skewed GDP-tubulin subunits. We suggest that the front of these expanding zones within the walls of the microtubule represent soliton-like movements of local deformation triggered by energy released from an outburst of hydrolysis. We propose that these solitons might be helpful in addressing a long-standing question relating to the mechanism underlying how GTP-tubulin hydrolysis controls dynamic instability. This result strongly supports the prediction that large conformational movements in tubulin subunits, termed dynamic transitions, occur as a result of the conversion of chemical energy that is triggered by GTP hydrolysis (Satarić et al., Electromagn Biol Med 24:255–264, 2005). Although simple, the concept of CNLC enables the formulation of a rationale to explain the intrinsic nature of the “push-and-pull” mechanism associated with a kinetochore–microtubule complex. In addition, the capacity of the microtubule wall to produce and mediate localized spatio-temporal excitations, i.e., soliton-like bursts of energy coupled with an abundance of microtubules in dendritic spines supports the hypothesis that microtubule dynamics may underlie neural information processing including neurocomputation. © 2012, Springer Natur
    corecore