12 research outputs found

    Morphogenesis of the T4 tail and tail fibers

    Get PDF
    Remarkable progress has been made during the past ten years in elucidating the structure of the bacteriophage T4 tail by a combination of three-dimensional image reconstruction from electron micrographs and X-ray crystallography of the components. Partial and complete structures of nine out of twenty tail structural proteins have been determined by X-ray crystallography and have been fitted into the 3D-reconstituted structure of the "extended" tail. The 3D structure of the "contracted" tail was also determined and interpreted in terms of component proteins. Given the pseudo-atomic tail structures both before and after contraction, it is now possible to understand the gross conformational change of the baseplate in terms of the change in the relative positions of the subunit proteins. These studies have explained how the conformational change of the baseplate and contraction of the tail are related to the tail's host cell recognition and membrane penetration function. On the other hand, the baseplate assembly process has been recently reexamined in detail in a precise system involving recombinant proteins (unlike the earlier studies with phage mutants). These experiments showed that the sequential association of the subunits of the baseplate wedge is based on the induced-fit upon association of each subunit. It was also found that, upon association of gp53 (gene product 53), the penultimate subunit of the wedge, six of the wedge intermediates spontaneously associate to form a baseplate-like structure in the absence of the central hub. Structure determination of the rest of the subunits and intermediate complexes and the assembly of the hub still require further study

    W-Au skarns in the Neo-Proterozoic Serido Mobile Belt, Borborema Province in northeastern Brazil: an overview with emphasis on the Bonfim deposit

    No full text
    The Serido Mobile Belt (SMB) is located in the Borborema Province in northeastern Brazil and consists of a gneiss basement (Archean to Paleo-Proterozoic), a metasedimentary sequence (marble, quartzites, and schists), and the Brasiliano igneous suite (both of Neo-Proterozoic age). In this region, skarns occur within marble and at the marble-schist contact in the metasedimentary sequence. Most of the skarn deposits have been discovered in the early 1940s, and since then, they have been exploited for tungsten and locally gold. Recently, the discovery of gold in the Bonfim tungsten skarn has resulted in a better understanding of the skarn mineralization in this region. The main characteristics of the SMB skarns are that they are dominantly oxidized tungsten skarns, with the exception of the Itajubatiba and Bonfim gold-bearing skarns, which are reduced based on pyrrhotite as the dominant sulfide, garnet with high almandine and spessartine component, and elevated gold contents. In the Bonfim deposit, pressure estimates indicate that the skarns formed at 10- to 15-km depth. The mineralized skarns present the prograde stage with almandine, diopside, anorthite, and actinolite-magnesio-hornblende, and titanite, apatite, allanite, zircon, and monazite as accessory minerals. The retrograde stage is characterized by alkali feldspar, clinozoisite-zoisite-sericite, calcite, and quartz. Scheelite occurs in four ore-shoots distributed within the marble and at the marble-schist contact. The main ore body is 5-120 cm wide and contains an average of 4.8-wt.% WO3, which occurs in the basal marble-schist contact. Fold hinges appear to control the location of high-grade scheelite. The late-stage gold mineralization contains bismite (Bi2O3), fluorine-bearing bismite, native bismuth, bismuthinite (Bi2S3), and joseite [Bi-4(Te,S)(3)], and also chlorite, epidote, prehnite, chalcopyrite, and sphalerite. This gold-bismuth-tellurium mineralization exhibits a typical late character and occurs as a black fine-grained mineral assemblage controlled by conjugate brittle-ductile faults (and extensional fractures) that crosscut not only the banding in prograde skarn but also the retrograde alkali feldspar and clinozoisite-zoisite-sericite assemblage. The Au-Bi-Te-bearing minerals are intergrown with retrograde epidote, prehnite, chlorite, chalcopyrite, and sphalerite, indicating that gold mineralization at Bonfim is linked to a late-stage skarn event. The polymetallic nature of the Bonfim deposit can be used as an important guide for the exploration of this type of skarn deposit in the Borborema Province, which potentially contains significant new, undiscovered gold and polymetallic deposits

    Structural changes in a marine podovirus associated with release of its genome into Prochlorococcus

    No full text
    Podovirus P-SSP7 infects Prochlorococcus marinus, the most abundant oceanic photosynthetic microorganism. Single particle cryo-electron microscopy (cryo-EM) yields icosahedral and asymmetrical structures of infectious P-SSP7 with 4.6 Å and 9 Å resolution, respectively. The asymmetric reconstruction reveals how symmetry mismatches are accommodated among 5 of the gene products at the portal vertex. Reconstructions of infectious and empty particles show a conformational change of the “valve” density in the nozzle, an orientation difference in the tail fibers, a disordering of the C-terminus of the portal protein, and disappearance of the core proteins. In addition, cryo-electron tomography (cryo-ET) of P-SSP7 infecting Prochlorococcus demonstrated the same tail fiber conformation as in empty particles. Our observations suggest a mechanism whereby, upon binding to the host cell, the tail fibers induce a cascade of structural alterations of the portal vertex complex that triggers DNA release.National Institutes of Health (U.S) (P41RR002250)National Institutes of Health (U.S) (R01GM079429)National Science Foundation (U.S.) (IIS-0705644)Robert A. Welch Foundation (Q1242)United States. Dept. of EnergyGordon and Betty Moore Foundatio
    corecore