10 research outputs found

    Studying the variability in the diurnal and seasonal variations in GPS total electron content over Nigeria

    Get PDF
    The study of diurnal and seasonal variations in total electron content (TEC) over Nigeria has been prompted by the recent increase in the number of GPS continuously operating reference stations (CORSs) across Nigeria as well as the reduced costs of microcomputing. The GPS data engaged in this study were recorded in the year 2012 at nine stations in Nigeria located between geomagnetic latitudes – 4.33 and 0.72° N. The GPS data were used to derive GPS TEC, which was analysed for diurnal and seasonal variations. The results obtained were used to produce local GPS TEC maps and bar charts. The derived GPS TEC across all the stations demonstrates consistent minimum diurnal variations during the pre-sunrise hours 04:00 to 06:00 LT, increases with sharp gradient during the sunrise period (∼ 07:00 to 09:00 LT), attains postnoon maximum at about 14:00 LT, and then falls to a minimum just before sunset. Generally, daytime variations are found to be greater than nighttime variations, which range between 0 and 5 TECU. The seasonal variation depicts a semi-annual distribution with higher values (∼ 25–30 TECU) around equinoxes and lower values (∼ 20–25 TECU) around solstices. The December Solstice magnitude is slightly higher than the June Solstice magnitude at all stations, while March Equinox magnitude is also slightly higher than September Equinox magnitude at all stations. Thus, the seasonal variation shows an asymmetry in equinoxes and solstices, with the month of October displaying the highest values of GPS TEC across the latitudes

    Individual tree and stand-level carbon and nutrient contents across one rotation of loblolly pine plantations on a reclaimed surface mine

    Get PDF
    While reclaimed loblolly pine (Pinus taeda L.) plantations in east Texas, USA have demonstrated similar aboveground productivity levels relative to unmined forests, there is interest in assessing carbon (C) and nutrients in aboveground components of reclaimed trees. Numerous studies have previously documented aboveground biomass, C, and nutrient contents in loblolly pine plantations; however, similar data have not been collected on mined lands. We investigated C, N, P, K, Ca, and Mg aboveground contents for first-rotation loblolly pine growing on reclaimed mined lands in the Gulf Coastal Plain over a 32-year chronosequence and correlated elemental rates to stand age, stem growth, and similar data for unmined lands. At the individual tree level, we evaluated elemental contents in aboveground biomass components using tree size, age, and site index as predictor variables. At the stand-level, we then scaled individual tree C and nutrients and fit a model to determine the sensitivity of aboveground elemental contents to stand age and site index. Our data suggest that aboveground C and nutrients in loblolly pine on mined lands exceed or follow similar trends to data for unmined pine plantations derived from the literature. Diameter and height were the best predictors of individual tree stem C and nutrient contents (R ≥ 0.9473 and 0.9280, respectively) followed by stand age (R ≥ 0.8660). Foliage produced weaker relationships across all predictor variables compared to stem, though still significant (P ≤ 0.05). The model for estimating stand-level C and nutrients using stand age provided a good fit, indicating that contents aggrade over time predictably. Results of this study show successful modelling of reclaimed loblolly pine aboveground C and nutrients, and suggest elemental cycling is comparable to unmined lands, thus providing applicability of our model to related systems
    corecore