161 research outputs found
An evaluation of possible mechanisms for anomalous resistivity in the solar corona
A wide variety of transient events in the solar corona seem to require
explanations that invoke fast reconnection. Theoretical models explaining fast
reconnection often rely on enhanced resistivity. We start with data derived
from observed reconnection rates in solar flares and seek to reconcile them
with the chaos-induced resistivity model of Numata & Yoshida (2002) and with
resistivity arising out of the kinetic Alfv\'en wave (KAW) instability. We find
that the resistivities arising from either of these mechanisms, when localized
over lengthscales of the order of an ion skin depth, are capable of explaining
the observationally mandated Lundquist numbers.Comment: Accepted, Solar Physic
Effective chiral lagrangian in the chiral limit from the instanton vacuum
We study the effective chiral Lagrangian in the chiral limit from the
instanton vacuum. Starting from the nonlocal effective chiral action, we derive
the effective chiral Lagrangian, using the derivative expansion to order
in the chiral limit. The low energy constants, , , and
are determined and compared with various models and the corresponding empirical
data. The results are in a good agreement with the data. We also discuss about
the upper limit of the sigma meson, based on the present results.Comment: 14 pages, 5 figures, submitted to Phys.Rev.
The systematic study of the influence of neutron excess on the fusion cross sections using different proximity-type potentials
Using different types of proximity potentials, we have examined the trend of
variations of barrier characteristics (barrier height and its position) as well
as fusion cross sections for 50 isotopic systems including various collisions
of C, O, Mg, Si, S, Ca, Ar, Ti and Ni nuclei with condition
for compound systems. The results of our studies reveal that the relationships
between increase of barrier positions and decrease of barrier heights are both
linear with increase of ratio. Moreover, fusion cross sections also
enhance linearly with increase of this ratio.Comment: 28 pages, 7 figures, 5 Table
A first-in-class, humanized antibody targeting alternatively spliced tissue factor: preclinical evaluation in an orthotopic model of pancreatic ductal adenocarcinoma
In 2021, pancreatic ductal adenocarcinoma (PDAC) is the 3(rd) leading cause of cancer deaths in the United States. This is largely due to a lack of symptoms and limited treatment options, which extend survival by only a few weeks. There is thus an urgent need to develop new therapies effective against PDAC. Previously, we have shown that the growth of PDAC cells is suppressed when they are co-implanted with RabMab1, a rabbit monoclonal antibody specific for human alternatively spliced tissue factor (asTF). Here, we report on humanization of RabMab1, evaluation of its binding characteristics, and assessment of its in vivo properties. hRabMab1 binds asTF with a K-D in the picomolar range; suppresses the migration of high-grade Pt45.P1 cells in Boyden chamber assays; has a long half-life in circulation (similar to 5 weeks); and significantly slows the growth of pre-formed orthotopic Pt45.P1 tumors in athymic nude mice when administered intravenously. Immunohistochemical analysis of tumor tissue demonstrates the suppression of i) PDAC cell proliferation, ii) macrophage infiltration, and iii) neovascularization, whereas RNAseq analysis of tumor tissue reveals the suppression of pathways that promote cell division and focal adhesion. This is the first proof-of-concept study whereby a novel biologic targeting asTF has been investigated as a systemically administered single agent, with encouraging results. Given that hRabMab1 has a favorable PK profile and is able to suppress the growth of human PDAC cells in vivo, it comprises a promising candidate for further clinical development.Thrombosis and Hemostasi
Astrophysical Axion Bounds
Axion emission by hot and dense plasmas is a new energy-loss channel for
stars. Observational consequences include a modification of the solar
sound-speed profile, an increase of the solar neutrino flux, a reduction of the
helium-burning lifetime of globular-cluster stars, accelerated white-dwarf
cooling, and a reduction of the supernova SN 1987A neutrino burst duration. We
review and update these arguments and summarize the resulting axion
constraints.Comment: Contribution to Axion volume of Lecture Notes in Physics, 20 pages, 3
figure
Advances in ab-initio theory of Multiferroics. Materials and mechanisms: modelling and understanding
Within the broad class of multiferroics (compounds showing a coexistence of
magnetism and ferroelectricity), we focus on the subclass of "improper
electronic ferroelectrics", i.e. correlated materials where electronic degrees
of freedom (such as spin, charge or orbital) drive ferroelectricity. In
particular, in spin-induced ferroelectrics, there is not only a {\em
coexistence} of the two intriguing magnetic and dipolar orders; rather, there
is such an intimate link that one drives the other, suggesting a giant
magnetoelectric coupling. Via first-principles approaches based on density
functional theory, we review the microscopic mechanisms at the basis of
multiferroicity in several compounds, ranging from transition metal oxides to
organic multiferroics (MFs) to organic-inorganic hybrids (i.e. metal-organic
frameworks, MOFs)Comment: 22 pages, 9 figure
Transverse Momentum Dependent Parton Distribution/Fragmentation Functions at an Electron-Ion Collider
We present a summary of a recent workshop held at Duke University on Partonic
Transverse Momentum in Hadrons: Quark Spin-Orbit Correlations and Quark-Gluon
Interactions. The transverse momentum dependent parton distribution functions
(TMDs), parton-to-hadron fragmentation functions, and multi-parton correlation
functions, were discussed extensively at the Duke workshop. In this paper, we
summarize first the theoretical issues concerning the study of partonic
structure of hadrons at a future electron-ion collider (EIC) with emphasis on
the TMDs. We then present simulation results on experimental studies of TMDs
through measurements of single spin asymmetries (SSA) from semi-inclusive
deep-inelastic scattering (SIDIS) processes with an EIC, and discuss the
requirement of the detector for SIDIS measurements. The dynamics of parton
correlations in the nucleon is further explored via a study of SSA in D (`D)
production at large transverse momenta with the aim of accessing the unexplored
tri-gluon correlation functions. The workshop participants identified the SSA
measurements in SIDIS as a golden program to study TMDs in both the sea and
valence quark regions and to study the role of gluons, with the Sivers
asymmetry measurements as examples. Such measurements will lead to major
advancement in our understanding of TMDs in the valence quark region, and more
importantly also allow for the investigation of TMDs in the sea quark region
along with a study of their evolution.Comment: 44 pages 23 figures, summary of Duke EIC workshop on TMDs accepted by
EPJ
Nucleosomes in gene regulation: theoretical approaches
This work reviews current theoretical approaches of biophysics and
bioinformatics for the description of nucleosome arrangements in chromatin and
transcription factor binding to nucleosomal organized DNA. The role of
nucleosomes in gene regulation is discussed from molecular-mechanistic and
biological point of view. In addition to classical problems of this field,
actual questions of epigenetic regulation are discussed. The authors selected
for discussion what seem to be the most interesting concepts and hypotheses.
Mathematical approaches are described in a simplified language to attract
attention to the most important directions of this field
- …