9 research outputs found

    Nonlinear-optical Negative-index Metamaterials: Extraordinary Properties and Applications

    Get PDF
    The principles of nanoengineering of metamaterials which support optical electromagnetic and elastic waves with negative group velocity are described. Extraordinary properties of nonlinear-optical energy transfer between contra-propagating short pulses of electromagnetic and elastic waves are investigated and prospective unique photonic devices are discussed. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3538

    The mathematical model of quantum dots pair orientation under laser radiation field

    Get PDF
    One approach for the formation of structures with complex geometries at the nanoscale is the step-by-step assembly. In this case, it is necessary to be able to estimate the time required to establish orientational equilibrium for a preformed pair of particles. This process is statistical in nature and depends on the mechanism of interaction of the ensemble with the external field. The orientation of particles in an alternating field is associated with certain relaxation times, which depend on the viscosity and temperature of the medium, as well as on the geometric structure of the samples. This paper proposes an mathematical model of the process of establishing the distribution of nanoparticles pairs orientations taking into account the friction force, thermal motion, and the orienting laser field. A statistical orientation distribution was obtained for CdTe particles in the field of moderate laser radiation, and the average time for establishing orientational equilibrium was estimated.V.S. Petrakova is grateful to Krasnoyarsk Mathematical Center financed by the Ministry of Science and Higher Education of the Russian Federation in the framework of the establishment and development of regional Centers for Mathematics Research and Education (Agreement No. 075-02-2022-873)

    Three-dimensional model of quantum dots' self-assembly under the laser field action

    Get PDF
    This study considers the self-assembly process of quantum dots to nanostructures with the predefined geometry, which proceeds in the external resonant laser field within the three-dimensional model of Brownian dynamics. Average aggregation time of nanoparticles depending on the external field wavelength was calculated. The probability of such structures formation was estimated for the calculated average aggregation time and for the pulse duration of the laser used in the experiment.The reported study was funded by RFBR and Krasnoyarsk Krai according to the research project No. 16-42-240410r_a and RFBR research project No. 16-32-00129

    Three-dimensional model of quantum dots' self-assembly under the action of laser radiation

    Get PDF
    This study considered a process of quantum dots' self-assembly into nanostructure arrays with predefined geometry, which proceeds in the external resonant laser field. We considered the simplest case of assembling a stable structure of two particles. The problem was solved numerically using a three-dimensional model of Brownian dynamics. The idea of the method is that the attraction of the dots occurs due to the interaction of resonantly induced dipole moments, with the dots being then captured by the Van der Waals force. Finally, a three-dimensional model was considered; the average nanoparticle aggregation time as a function of the laser radiation wavelength was calculated; the probability of such structures' being formed was estimated for the calculated average aggregation time and for the laser pulse duration used in the experiment. The wavelength of the maximum probability was found to be shifted from the single particle resonance wavelength of 525 nm to the red area of 535 nm, which is in qualitative agreement with the redshift of the resonance wavelength of interacting particles.The work was funded by the Russian Foundation for Basic Research (RFBR) and Krasnoyarsk Krai administration under research project No. 16-42-240410r_a, RFBR research project No. 16-32-00129 and by the Ministry of Education and Science of the Russian Federation (Grant 3.6341.2017/VU)

    The mathematical model of quantum dots pair orientation under laser radiation field

    No full text
    One approach for the formation of structures with complex geometries at the nanoscale is the step-by-step assembly. In this case, it is necessary to be able to estimate the time required to establish orientational equilibrium for a preformed pair of particles. This process is statistical in nature and depends on the mechanism of interaction of the ensemble with the external field. The orientation of particles in an alternating field is associated with certain relaxation times, which depend on the viscosity and temperature of the medium, as well as on the geometric structure of the samples. This paper proposes an mathematical model of the process of establishing the distribution of nanoparticles pairs orientations taking into account the friction force, thermal motion, and the orienting laser field. A statistical orientation distribution was obtained for CdTe particles in the field of moderate laser radiation, and the average time for establishing orientational equilibrium was estimated

    Inversionless amplification of light by molecules selectively oriented over states in the field of laser radiation

    No full text
    ВСкст ΡΡ‚Π°Ρ‚ΡŒΠΈ Π½Π΅ публикуСтся Π² ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠΌ доступС Π² соотвСтствии с ΠΏΠΎΠ»ΠΈΡ‚ΠΈΠΊΠΎΠΉ ΠΆΡƒΡ€Π½Π°Π»Π°

    Low-Order Nonlinear Optical Characterization of Clusters

    No full text

    Nonlinear Optical Refraction and Absorption of Media

    No full text
    corecore