147 research outputs found

    An Arbitrary Two-qubit Computation In 23 Elementary Gates

    Get PDF
    Quantum circuits currently constitute a dominant model for quantum computation. Our work addresses the problem of constructing quantum circuits to implement an arbitrary given quantum computation, in the special case of two qubits. We pursue circuits without ancilla qubits and as small a number of elementary quantum gates as possible. Our lower bound for worst-case optimal two-qubit circuits calls for at least 17 gates: 15 one-qubit rotations and 2 CNOTs. To this end, we constructively prove a worst-case upper bound of 23 elementary gates, of which at most 4 (CNOT) entail multi-qubit interactions. Our analysis shows that synthesis algorithms suggested in previous work, although more general, entail much larger quantum circuits than ours in the special case of two qubits. One such algorithm has a worst case of 61 gates of which 18 may be CNOTs. Our techniques rely on the KAK decomposition from Lie theory as well as the polar and spectral (symmetric Shur) matrix decompositions from numerical analysis and operator theory. They are related to the canonical decomposition of a two-qubit gate with respect to the ``magic basis'' of phase-shifted Bell states, published previously. We further extend this decomposition in terms of elementary gates for quantum computation.Comment: 18 pages, 7 figures. Version 2 gives correct credits for the GQC "quantum compiler". Version 3 adds justification for our choice of elementary gates and adds a comparison with classical library-less logic synthesis. It adds acknowledgements and a new reference, adds full details about the 8-gate decomposition of topC-V and stealthily fixes several minor inaccuracies. NOTE: Using a new technique, we recently improved the lower bound to 18 gates and (tada!) found a circuit decomposition that requires 18 gates or less. This work will appear as a separate manuscrip

    Synthesis of Quantum Circuits for Linear Nearest Neighbor Architectures

    Full text link
    While a couple of impressive quantum technologies have been proposed, they have several intrinsic limitations which must be considered by circuit designers to produce realizable circuits. Limited interaction distance between gate qubits is one of the most common limitations. In this paper, we suggest extensions of the existing synthesis flow aimed to realize circuits for quantum architectures with linear nearest neighbor (LNN) interaction. To this end, a template matching optimization, an exact synthesis approach, and two reordering strategies are introduced. The proposed methods are combined as an integrated synthesis flow. Experiments show that by using the suggested flow, quantum cost can be improved by more than 50% on average.Comment: 14 pages, 11 figures, 3 table

    Anomaly in the K^0_S Sigma^+ photoproduction cross section off the proton at the K* threshold

    Get PDF
    The γ+pK0+Σ+\gamma + p \rightarrow K^0 + \Sigma^+ photoproduction reaction is investigated in the energy region from threshold to Eγ=2250E_\gamma = 2250\,MeV. The differential cross section exhibits increasing forward-peaking with energy, but only up to the KK^* threshold. Beyond, it suddenly returns to a flat distribution with the forward cross section dropping by a factor of four. In the total cross section a pronounced structure is observed between the KΛK^*\Lambda and KΣK^*\Sigma thresholds. It is speculated whether this signals the turnover of the reaction mechanism from t-channel exchange below the KK^* production threshold to an s-channel mechanism associated with the formation of a dynamically generated KK^*-hyperon intermediate state.Comment: 14 pages, 7 figure

    Linearly polarised photon beams at ELSA and measurement of the beam asymmetry in pi^0-photoproduction off the proton

    Full text link
    At the electron accelerator ELSA a linearly polarised tagged photon beam is produced by coherent bremsstrahlung off a diamond crystal. Orientation and energy range of the linear polarisation can be deliberately chosen by accurate positioning of the crystal with a goniometer. The degree of polarisation is determined by the form of the scattered electron spectrum. Good agreement between experiment and expectations on basis of the experimental conditions is obtained. Polarisation degrees of P = 40% are typically achieved at half of the primary electron energy. The determination of P is confirmed by measuring the beam asymmetry, \Sigma, in pi^0 photoproduction and a comparison of the results to independent measurements using laser backscattering.Comment: 9 pages, 10 figures, submitted to EPJ
    corecore