13 research outputs found
Plankton lattices and the role of chaos in plankton patchiness
Spatiotemporal and interspecies irregularities in planktonic populations have been widely observed. Much research into the drivers of such plankton patches has been initiated over the past few decades but only recently have the dynamics of the interacting patches themselves been considered. We take a coupled lattice approach to model continuous-in-time plankton patch dynamics, as opposed to the more common continuum type reaction-diffusion-advection model, because it potentially offers a broader scope of application and numerical study with relative ease. We show that nonsynchronous plankton patch dynamics (the discrete analog of spatiotemporal irregularity) arise quite naturally for patches whose underlying dynamics are chaotic. However, we also observe that for parameters in a neighborhood of the chaotic regime, smooth generalized synchronization of nonidentical patches is more readily supported which reduces the incidence of distinct patchiness. We demonstrate that simply associating the coupling strength with measurements of (effective) turbulent diffusivity results in a realistic critical length of the order of 100 km, above which one would expect to observe unsynchronized behavior. It is likely that this estimate of critical length may be reduced by a more exact interpretation of coupling in turbulent flows
Dynamics of coupled cell networks: synchrony, heteroclinic cycles and inflation
Copyright © 2011 Springer. The final publication is available at www.springerlink.comWe consider the dynamics of small networks of coupled cells. We usually assume asymmetric inputs and no global or local symmetries in the network and consider equivalence of networks in this setting; that is, when two networks with different architectures give rise to the same set of possible dynamics. Focussing on transitive (strongly connected) networks that have only one type of cell (identical cell networks) we address three questions relating the network structure to dynamics. The first question is how the structure of the network may force the existence of invariant subspaces (synchrony subspaces). The second question is how these invariant subspaces can support robust heteroclinic attractors. Finally, we investigate how the dynamics of coupled cell networks with different structures and numbers of cells can be related; in particular we consider the sets of possible “inflations” of a coupled cell network that are obtained by replacing one cell by many of the same type, in such a way that the original network dynamics is still present within a synchrony subspace. We illustrate the results with a number of examples of networks of up to six cells
General Stability Analysis of Synchronized Dynamics in Coupled Systems
We consider the stability of synchronized states (including equilibrium
point, periodic orbit or chaotic attractor) in arbitrarily coupled dynamical
systems (maps or ordinary differential equations). We develop a general
approach, based on the master stability function and Gershgorin disc theory, to
yield constraints on the coupling strengths to ensure the stability of
synchronized dynamics. Systems with specific coupling schemes are used as
examples to illustrate our general method.Comment: 8 pages, 1 figur