145 research outputs found
N\'eel transition, spin fluctuations, and pseudogap in underdoped cuprates by a Lorentz invariant four-fermion model in 2+1 dimensions
We show that the N\'eel transition and spin fluctuations near the N\'eel
transition in planar cuprates can be described by an SU(2) invariant
relativistic four-fermion model in 2+1 dimensions. Features of the pseudogap
phenomenon are naturally described by the appearance of an anomalous dimension
for the spinon propagator.Comment: 5 pages, 2 figures (revtex4). Final revised and corrected versio
Quantum phase transitions and thermodynamic properties in highly anisotropic magnets
The systems exhibiting quantum phase transitions (QPT) are investigated
within the Ising model in the transverse field and Heisenberg model with
easy-plane single-site anisotropy. Near QPT a correspondence between parameters
of these models and of quantum phi^4 model is established. A scaling analysis
is performed for the ground-state properties. The influence of the external
longitudinal magnetic field on the ground-state properties is investigated, and
the corresponding magnetic susceptibility is calculated. Finite-temperature
properties are considered with the use of the scaling analysis for the
effective classical model proposed by Sachdev. Analytical results for the
ordering temperature and temperature dependences of the magnetization and
energy gap are obtained in the case of a small ground-state moment. The forms
of dependences of observable quantities on the bare splitting (or magnetic
field) and renormalized splitting turn out to be different. A comparison with
numerical calculations and experimental data on systems demonstrating magnetic
and structural transitions (e.g., into singlet state) is performed.Comment: 46 pages, RevTeX, 6 figure
Magnetization and dimerization profiles of the cut two-leg spin ladder and spin-1 chain
The physical properties of the edge states of the cut two-leg spin ladder are
investigated by means of the bosonization approach. By carefully treating
boundary conditions, we derive the existence of spin-1/2 edge states in the
spin ladder with a ferromagnetic rung exchange and for the open spin-1
Heisenberg chain. In contrast, such states are absent in the antiferromagnetic
rung coupling case. The approach, based on a mapping onto decoupled
semi-infinite off-critical Ising models, allows us to compute several physical
quantities of interest. In particular, we determine the magnetization and
dimerization profiles of the cut two-leg spin ladder and of the open
biquadratic spin-1 chain in the vicinity of the SU(2) WZNW critical point.Comment: RevTeX 4, no figure, 26 page
Reproducibility in the absence of selective reporting : An illustration from large-scale brain asymmetry research
Altres ajuts: Max Planck Society (Germany).The problem of poor reproducibility of scientific findings has received much attention over recent years, in a variety of fields including psychology and neuroscience. The problem has been partly attributed to publication bias and unwanted practices such as p-hacking. Low statistical power in individual studies is also understood to be an important factor. In a recent multisite collaborative study, we mapped brain anatomical left-right asymmetries for regional measures of surface area and cortical thickness, in 99 MRI datasets from around the world, for a total of over 17,000 participants. In the present study, we revisited these hemispheric effects from the perspective of reproducibility. Within each dataset, we considered that an effect had been reproduced when it matched the meta-analytic effect from the 98 other datasets, in terms of effect direction and significance threshold. In this sense, the results within each dataset were viewed as coming from separate studies in an "ideal publishing environment," that is, free from selective reporting and p hacking. We found an average reproducibility rate of 63.2% (SD = 22.9%, min = 22.2%, max = 97.0%). As expected, reproducibility was higher for larger effects and in larger datasets. Reproducibility was not obviously related to the age of participants, scanner field strength, FreeSurfer software version, cortical regional measurement reliability, or regional size. These findings constitute an empirical illustration of reproducibility in the absence of publication bias or p hacking, when assessing realistic biological effects in heterogeneous neuroscience data, and given typically-used sample sizes
Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube
The Advanced LIGO observatories detected gravitational waves from two binary black hole mergers during their first observation run (O1). We present a high-energy neutrino follow-up search for the second gravitational wave event, GW151226, as well as for gravitational wave candidate LVT151012. We find two and four neutrino candidates detected by IceCube, and one and zero detected by Antares, within ±500 s around the respective gravitational wave signals, consistent with the expected background rate. None of these neutrino candidates are found to be directionally coincident with GW151226 or LVT151012. We use nondetection to constrain isotropic-equivalent high-energy neutrino emission from GW151226, adopting the GW event's 3D localization, to less than 2×1051-2×1054 erg. © 2017 American Physical Society
Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers
We report results of a wideband search for periodic gravitational waves from isolated neutron stars within the Orion spur towards both the inner and outer regions of our Galaxy. As gravitational waves interact very weakly with matter, the search is unimpeded by dust and concentrations of stars. One search disk (A) is 6.87° in diameter and centered on 20h10m54.71s+33°33′25.29′′, and the other (B) is 7.45° in diameter and centered on 8h35m20.61s-46°49′25.151′′. We explored the frequency range of 50-1500 Hz and frequency derivative from 0 to -5×10-9 Hz/s. A multistage, loosely coherent search program allowed probing more deeply than before in these two regions, while increasing coherence length with every stage. Rigorous follow-up parameters have winnowed the initial coincidence set to only 70 candidates, to be examined manually. None of those 70 candidates proved to be consistent with an isolated gravitational-wave emitter, and 95% confidence level upper limits were placed on continuous-wave strain amplitudes. Near 169 Hz we achieve our lowest 95% C.L. upper limit on the worst-case linearly polarized strain amplitude h0 of 6.3×10-25, while at the high end of our frequency range we achieve a worst-case upper limit of 3.4×10-24 for all polarizations and sky locations. © 2016 American Physical Society
- …
