7 research outputs found

    Cancellation of nonrenormalizable hypersurface divergences and the d-dimensional Casimir piston

    Full text link
    Using a multidimensional cut-off technique, we obtain expressions for the cut-off dependent part of the vacuum energy for parallelepiped geometries in any spatial dimension d. The cut-off part yields nonrenormalizable hypersurface divergences and we show explicitly that they cancel in the Casimir piston scenario in all dimensions. We obtain two different expressions for the d-dimensional Casimir force on the piston where one expression is more convenient to use when the plate separation a is large and the other when a is small (a useful a1/aa \to 1/a duality). The Casimir force on the piston is found to be attractive (negative) for any dimension d. We apply the d-dimensional formulas (both expressions) to the two and three-dimensional Casimir piston with Neumann boundary conditions. The 3D Neumann results are in numerical agreement with those recently derived in arXiv:0705.0139 using an optical path technique providing an independent confirmation of our multidimensional approach. We limit our study to massless scalar fields.Comment: 29 pages; 3 figures; references added; to appear in JHE

    Spectral action for torsion with and without boundaries

    Full text link
    We derive a commutative spectral triple and study the spectral action for a rather general geometric setting which includes the (skew-symmetric) torsion and the chiral bag conditions on the boundary. The spectral action splits into bulk and boundary parts. In the bulk, we clarify certain issues of the previous calculations, show that many terms in fact cancel out, and demonstrate that this cancellation is a result of the chiral symmetry of spectral action. On the boundary, we calculate several leading terms in the expansion of spectral action in four dimensions for vanishing chiral parameter θ\theta of the boundary conditions, and show that θ=0\theta=0 is a critical point of the action in any dimension and at all orders of the expansion.Comment: 16 pages, references adde

    Heat-kernels and functional determinants on the generalized cone

    Get PDF
    We consider zeta functions and heat-kernel expansions on the bounded, generalized cone in arbitrary dimensions using an improved calculational technique. The specific case of a global monopole is analysed in detail and some restrictions thereby placed on the A5/2A_{5/2} coefficient. The computation of functional determinants is also addressed. General formulas are given and known results are incidentally, and rapidly, reproduced.Comment: 26p,LaTeX.(Cosmetic changes and eqns (9.8),(11.2) corrected.

    Electromagnetic Casimir densities for a wedge with a coaxial cylindrical shell

    Full text link
    Vacuum expectation values of the field square and the energy-momentum tensor for the electromagnetic field are investigated for the geometry of a wedge with a coaxal cylindrical boundary. All boundaries are assumed to be perfectly conducting and both regions inside and outside the shell are considered. By using the generalized Abel-Plana formula, the vacuum expectation values are presented in the form of the sum of two terms. The first one corresponds to the geometry of the wedge without the cylindrical shell and the second term is induced by the presence of the shell. The vacuum energy density induced by the shell is negative for the interior region and is positive for the exterior region. The asymptotic behavior of the vacuum expectation values are investigated in various limiting cases. It is shown that the vacuum forces acting on the wedge sides due to the presence of the cylindrical boundary are always attractive.Comment: 21 pages, 7 figure

    Finite temperature Casimir effect in piston geometry and its classical limit

    Full text link
    We consider the Casimir force acting on a dd-dimensional rectangular piston due to massless scalar field with periodic, Dirichlet and Neumann boundary conditions and electromagnetic field with perfect electric conductor and perfect magnetic conductor boundary conditions. It is verified analytically that at any temperature, the Casimir force acting on the piston is always an attractive force pulling the piston towards the interior region, and the magnitude of the force gets larger as the separation aa gets smaller. Explicit exact expressions for the Casimir force for small and large plate separations and for low and high temperatures are computed. The limits of the Casimir force acting on the piston when some pairs of transversal plates are large are also derived. An interesting result regarding the influence of temperature is that in contrast to the conventional result that the leading term of the Casimir force acting on a wall of a rectangular cavity at high temperature is the Stefan--Boltzmann (or black body radiation) term which is of order Td+1T^{d+1}, it is found that the contributions of this term from the interior and exterior regions cancel with each other in the case of piston. The high temperature leading order term of the Casimir force acting on the piston is of order TT, which shows that the Casimir force has a nontrivial classical 0\hbar\to 0 limit

    Thermal Casimir effect in ideal metal rectangular boxes

    Full text link
    The thermal Casimir effect in ideal metal rectangular boxes is considered using the method of zeta functional regularization. The renormalization procedure is suggested which provides the finite expression for the Casimir free energy in any restricted quantization volume. This expression satisfies the classical limit at high temperature and leads to zero thermal Casimir force for systems with infinite characteristic dimensions. In the case of two parallel ideal metal planes the results, as derived previously using thermal quantum field theory in Matsubara formulation and other methods, are reproduced starting from the obtained expression. It is shown that for rectangular boxes the temperature-dependent contribution to the electromagnetic Casimir force can be both positive and negative depending on side lengths. The numerical computations of the scalar and electromagnetic Casimir free energy and force are performed for cubesComment: 10 pages, 4 figures, to appear in Europ. Phys. J.

    References

    No full text
    corecore