4 research outputs found

    Phase Behavior of Bent-Core Molecules

    Full text link
    Recently, a new class of smectic liquid crystal phases (SmCP phases) characterized by the spontaneous formation of macroscopic chiral domains from achiral bent-core molecules has been discovered. We have carried out Monte Carlo simulations of a minimal hard spherocylinder dimer model to investigate the role of excluded volume interations in determining the phase behavior of bent-core materials and to probe the molecular origins of polar and chiral symmetry breaking. We present the phase diagram as a function of pressure or density and dimer opening angle ψ\psi. With decreasing ψ\psi, a transition from a nonpolar to a polar smectic phase is observed near ψ=167\psi = 167^{\circ}, and the nematic phase becomes thermodynamically unstable for ψ<135\psi < 135^{\circ}. No chiral smectic or biaxial nematic phases were found.Comment: 4 pages Revtex, 3 eps figures (included

    Viscoelastic dynamics of spherical composite vesicles

    No full text
    A micromechanical model for the low-frequency dynamics of spherical composite vesicles (CVs) is proposed. Solidlike viscoelastic properties of the CVs are taken into account. The equations of motion of a CV surrounded by a viscous liquid are derived. They have discrete solutions which describe linearly coupled stretching and bending relaxation modes and an independent shear mode. The qualitative difference between the bending modes excited in a spherical vesicle and that in a flat membrane is demonstrated. The shear elasticity of the CVs gives an essential contribution to the relaxation rate of the bending mode at small wave numbers. It is also shown that even in an incompressible spherical vesicle with a finite shear modulus, the bending mode involves both radial and tangent displacements. These reasons make both in-plane and out-of-plane low-frequency responses of the CV quite different with respect to those of the flat membrane. To compare our theoretical results with published experimental data, the power spectra of the actin-coated CV are calculated

    Optical Properties and Phenomenological Theory of Ferri-Ferri Phase Transitions in Antiferroelectric Liquid Crystals

    No full text
    Optical rotatory power and Raman scattering experiments on chiral liquid crystals belonging to a series which exhibits one or two ferrielectric phases have been performed. The results of these non-perturbative techniques show that, depending upon the aliphatic chain length, a first order transition with a jump in sign and value of the helical pitch, or a divergence and sign reversal of the pitch with no transition can occur in these systems. These observations are in agreement with a generalized Landau-de Gennes phenomenological model predicting that the ferrielectric phases, when both exist, should be isostructural
    corecore