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Abstract. A molecular theory of both elastic constants and the flexoelectric coefficients of bent-core ne-
matic liquid crystals has been developed taking into account dipole-dipole interactions as well as polar
interactions determined by the bent molecular shape. It has been shown that if polar interactions are ne-
glected, the elastic constants are increasing monotonically with the decreasing temperature. On the other
hand, dipolar interactions between bent-core molecules may result in a dramatic increase of the bend flex-
ocoefficient. As a result, the flexoelectric contribution to the bend elastic constant increases significantly,
and the bend elastic constant appears to be very small throughout the nematic range and may vanish at a
certain temperature. This temperature may then be identified as a temperature of the elastic instability of
the bent-core nematic phase which induces a transition into the modulated phases with bend deformations
like recently reported twist-bend phase. The temperature variation of the elastic constants is qualitatively
similar to the typical experimental data for bent-core nematics.

1 Introduction

Nematic liquid crystals (LCs) are uniaxial anisotropic flu-
ids composed of anisotropic molecules. Primary axes of
such molecules are partially ordered along the local sym-
metry axis specified by the unit vector-director n. Main
properties of nematic LCs are relatively well understood,
and at present the attention is focused into the so-called
twist-bend nematic phase. Recently it has been found ex-
perimentally that some mesogenic dimers, in which rigid
cores are connected by a flexible aliphatic chain, exhibit a
transition into the novel low temperature nematic phase
which is seemingly uniaxial [1–3]. This phase is character-
ized by macroscopic stripes with a period related to the
cell thickness [1], and it has been found also in bent-core
LCs [4, 5] and their hybrids [6]. It has been established
by freeze-fracture transmission electron microscopy that
the microscopic structure of the twist-bend phase is the
oblique helicoid of the director with the extremely short
pitch of approximately three molecular lengths [1–7]. Such
a structure is consistent with strong twist and bend de-
formations. The properties of this phase have also been
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investigated by other techniques including small angle x-
ray scattering and magnetic resonance [8, 9].

From the theoretical point of view different liquid crys-
tal phases composed of bent-core molecules have been
analysed using the Landau-de Gennes theory in [10, 11].
The twist-bend phase has been comprehensively described
by Dozov [12] who has assumed that in the nematic phase
composed of bent-core molecules the bend elastic constant
can approach zero and even turn negative at a certain tem-
perature. In this case the homogeneous director distribu-
tion will become unstable because of the rapidly grow-
ing bend and twist deformations which are finally stabi-
lized by the corresponding higher-order terms. Dozov has
also showed that the modulated phase could be either a
twist-bend (TB) or a splay-bend (SB) phase depending
on the relationship between bend and splay elastic con-
stants. The helical structure of the twist-bend phase has
also been confirmed by simulations [5, 13, 14]. It should
be noted that the key assumption about the decrease of
the bend elastic constant has been indeed confirmed ex-
perimentally [3, 8, 15]. Clearly it is impossible to measure
negative elastic constants, but very low positive values of
K33 have been observed directly above the transition into
the TB phase [3, 8, 15].
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It is impossible to develop a consistent theory of the
TB phase without presenting a model which explains why
the bend elastic constant decreases with the decreasing
temperature and approaches zero at a certain tempera-
ture in the nematic phase. A reasonable model has re-
cently been proposed by Selinger [16] who has taken into
consideration that the Frank elastic constants are renor-
malized by the flexoelectric coefficients. In conventional
nematics this effect is negligibly weak as the flexocoeffi-
cients are relatively small. However, in bent-core nematics
and in nematics composed of mesogenic dimers the flexco-
efficients may be significantly larger although the results
obtained by different methods are controversial [17, 18].
Selinger has shown that the flexoelectric coefficients may
increase dramatically if the system is close to the tran-
sition into the virtual proper ferroelectric phase. Such
a ferroelectric phase may never be observed as it is less
stable then other phases, but the corresponding pretran-
sitional effects should still be taken into account in the
description of the flexoelectric effect. Close to the ferro-
electric phase, a nematic liquid crystal possesses a very
large dielectric susceptibility and hence any bend or splay
deformations of the director should induce a large po-
larization. Recently the phenomenological model of the
NTB phase, proposed by Selinger, has been used to cal-
culate the compressibility of the NTB phase and to com-
pare it with the experiment [19]. The model has also been
generalised to account for the biaxial order of bent-core
molecules [20]. Very recently a more general Landau-de
Gennes theory has been developed which enables one to
describe three different chiral nematic phases with phase
transitions among them [21].

One notes that the theory [16] is phenomenological and
contains a number of parameters which are not related to
each other. Thus it describes the effect in principle but
does not indicate how strong is the effect of flexcoefficients
on the values of the elastic constants. An alternative the-
ory has recently been developed by Ferrarini et al. [22]
who have been able to obtain some numerical evidence of
very low values of the elastic constants using the model
of non-polar bent-core molecules, i.e. without taking flex-
oelectricity into account. Very recently it has been shown
theoretically that the TB phase can be exhibited by an
athermal system of hard bent rods [14]. One notes also
that of the first molecular theories of uniaxial and biax-
ial nematic ordering in the system of bent rods has been
presented by Teixeira et al. [23]. The relationship between
the two approaches is briefly discussed in the last section.
Finally, very recently another molecular theory of the lo-
cally polar bent-core nematic phase has been proposed by
Vanakaras and Photinos [24] who have considered a ne-
matic with a non-conical short pitch helical structure.

In this paper we use the same molecular model to
calculate both the elastic constants and the flexoelectric
coefficients of bent-core nematics using the molecular-
statistical theory in the Parsons-Lee approximation. We
present explicit expressions for the effective flexoelectric
coefficients and demonstrate how they diverge on the
approach to the transition into the virtual ferroelectric
phase. Finally we calculate effective (renormalized) elas-

tic constants as functions of temperature and show how
the bend elastic constant K33 may go to zero while K11

and K22 behave in a conventional way.

2 Effect of flexoelectricity on the Frank
elastic constants

The distortion free energy of the polar nematic LC can be
written in the following standard form:

Fd =
1
2
K11S2 +

1
2
K22T 2 +

1
2
K33B2 +

1
2
P · (χ−1) · P

−e10(P · S) − e30(P · B), (1)

where S = n(∇ · n) is the splay deformation vector,
B = (n × (∇ × n)) is the bend deformation vector and
T = (n · (∇ × n)) is the twist deformation pseudoscalar.
Here the first three terms represent the standard Frank
elastic energy where K11, K22, K33 are the “bare” elas-
tic constants. The fourth term is the dielectric energy of
the polar nematic, where χij is the dielectric susceptibility
tensor of the nematic phase which can be expressed as

χij = χ0δij + (χ‖ − χ⊥)
(

ninj −
1
3
δij

)
(2)

and where χ‖ is the longitudinal susceptibility of the ne-
matic phase (along the director n), χ⊥ is the transverse
susceptibility (perpendicular to the director), while χ0 is
the average susceptibility. Finally, the last two terms de-
scribe the flexoelectric effect according to Meyer [25] (see
also recent review [26]) that is a coupling between the po-
larization P and the bend and splay deformation vectors.
Here e10 and e30 are the splay and bend bare flexoelectric
coefficients, respectively.

Minimization of the free energy (1) with respect to
polarization P yields

P = χ‖e10S + χ⊥e30B, (3)

where we have used eq. (2) and have taken into account
that (n · B) = 0. Substituting the polarization (3) back
into the free energy (1) one obtains

Fd =
1
2
K̃11S2 +

1
2
K22T 2 +

1
2
K̃33B2, (4)

where K̃11 and K̃33 are the effective splay and bend elastic
constants renormalized by the flexocoefficients:

K̃11 = K11 −
1
2
χ‖e

2
10; K̃33 = K33 −

1
2
χ⊥e2

30. (5)

One notes that the flexoelectric corrections to the elastic
constants are negative and thus they diminish the values
of the latter. On the other hand, for normal values of the
flexoelectric coefficients the corrections are very small and
may be neglected. This conclusion, however, is no longer
valid if the system is close to the transition into the virtual
ferroelectric phase which may actually not be observed.
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Indeed, above the transition into the ferroelectric phase
the temperature variation of the dielectric susceptibility is
described by the Curie-Weiss law, that is χ = λ/(T − T0)
where T0 is the temperature of the transition into the
virtual ferroelectric phase.

It is interesting to note also that in the anisotropic
non-polar nematic phase both components of the dielec-
tric susceptibility are described by the Curie-Weiss law,
i.e. χ‖ = λ1/(T −T‖) and χ⊥ = λ2/(T −T⊥), but the tem-
peratures T‖ and T⊥ are generally different. This means
that the spontaneous polarization appears first in the di-
rection parallel or perpendicular to the director depending
on which of the temperatures T‖ and T⊥ is higher. Then
the system undergoes the transition into the ferroelectric
phase at the temperature Tc = max(T‖, T⊥). This gen-
eral assumption is actually confirmed by the molecular
theory of the flexoelectric effect presented in the following
section. In bent-core nematics the bend deformation dom-
inates and it is reasonable to assume that T‖ < T⊥. Then
the effective bend elastic constant K̃33 = K33− λ2

2(T−T⊥)e
2
30

decreases when temperature approaches T⊥ and vanishes
at some temperature T∗ > T⊥.

In this paper we develop a molecular theory of both
flexoelectricity and the elasticity of bent-core nematics us-
ing the same molecular model and investigate how the
temperature variation of the elastic constants is affected
by the bend molecular shape the permanent molecular
dipole and other parameters of bent-core molecules.

3 Molecular theory of elasticity of nematics
without polar order

A molecular theory of elasticity of nematic LCs can be
developed using the density functional approach to the
theory of nematic LCs (see, for example, [27–29]) and em-
ploying the gradient expansion of the orientational distri-
bution function [30–32] (see also [33–35] and references
therein on the earlier works). In this approach, the free
energy of a liquid crystal, F , is a functional of the ori-
entational distribution function f . The general structure
of the functional F [f ] is not known, but the functional
derivatives are known and are related to the direct corre-
lation functions of the nematic phase.

The free energy of the distorted nematic liquid crystal
can generally be written as a sum of two terms:

F = W + H, (6)

where W is the free energy of the system without in-
termolecular interactions. Without the external field the
ideal gas free energy W can be expressed as

W = ρkBT

∫
f(ω) ln [f(ω)Λ] dω, (7)

where ω = (a,b), ρ is the number density of molecules,
the unit vectors a and b are in the direction of the long
and short molecular axis respectively, and Λ is a constant.

The reduced free energy H[f ] is the generating functional
for the direct correlation functions of the system:

δ(βH)
δ(ρ(ω))

= −C1(ω) = − ln ρ(ω) + βμ + const, (8)

δ2(βH)
δ(ρ(ω1))δ(ρ(ω2))

= −C2(ω1, ω2), (9)

where ρ(ω) = ρf(ω), β = 1
kBT , μ is the chemical potential

and C2(ω1, ω2) is the direct pair correlation function of
the liquid crystal.

The reduced free energy H can be expressed in a sim-
ple analytical form by expanding around its value in the
isotropic phase, that is by using the functional Taylor ex-
pansion of H in terms of Δf = f − f0 where f0 = 1

8π2 is
the one particle distribution function for biaxial molecules
in the isotropic phase. Taking into account that ∂F

∂f = 0
one obtains [27–29]

F = ρkBT

∫
f(x) ln [f(x)Λ] dxdr − 1

2
kBTρ2

×
∫

C2I(x1, r12,x2)Δf(x1)Δf(x2)dr12dx1 dx2 dr1,

(10)

where x = (a,b), r12 is the intermolecular vector and
C2I(x1, r12,x2) is the direct pair correlation function of
the isotropic phase.

The general form of the direct pair correlation function
is not known but there exist a number of useful approxima-
tions which enable one to obtain some analytical results.
In particular, in the Parsons-Lee approximation [36, 37]
one assumes that the direct correlation function can
be written in the scaled form, i.e. C2I(x1, r12,x2) =
C2(r12/σ12) where σ12 = σ12(x1,u12,x2) is the minimum
distance of approach for two rigid molecules “1” and “2”
which depends on their relative orientation, and where the
unit vector u12 = r12/r12. This approximation, however,
makes sense only for molecules of convex shape when the
function σ12 is well defined. Simple interpolation (between
three orientations, see for instance [38]) of σ12 for two uni-
axial hard spherocylinders, of diameter d and with L being
its total length, is the following:

σ12 = d +
L − d

2
(
(a1 · u12)2 + (a2 · u12)2

)
. (11)

In the case of bent-core molecules the Parsons-Lee ap-
proximation can be modified in the following way. Let
us consider a simple model of a bent-core molecules (see
fig. 1) which is composed of the two uniaxial arms rigidly
joined together at a bend angle α. Now let us assume that
the pair correlation function for bent-core molecules i and
j can be written as a sum of the correlation functions be-
tween different arms of the two molecules expressed in the
Parsons-Lee approximation:

C2I(xi, rij ,xj) ≈
∑
ν,μ

C2

(
rνμ

σνμ

)
, (12)
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Fig. 1. (Color online) The model of hard bent-core molecules
composed of two uniaxial spherocylinders of width d, where
L is its length. The opening angle of a molecule is equal to
π − 2α and the distance between molecules 1 and 2 is given
by the relation r12 = rij + L(a1,i − a2,j)/2, where indices i
and j correspond to the vectors along the arms located in the
half-length of each spherocylinder.

where σνμ = σνμ(ai,ν ,uνμ,aj,μ). Here ai,ν is the unit vec-
tor along the primary axis of the arm ν of the molecule
i, aj,μ is the primary axis of the arm μ of the molecule j,
rνμ is the vector between the centre of the arm ν of the
molecule i and the centre of the arm μ of the molecule j
and uνμ = rνμ/rνμ.

One notes that the approximation (12) is rather crude
as it does not account for the correlations between three
different arms, that is for the configurations, for example,
when an arm is in contact with both arms of the neigh-
boring molecule. On the other hand, the relative statistical
weight of such configurations is sufficiently small and may
be neglected in the first approximation. Introducing the
new variables r′νμ = rνμ/σνμ the second term in eq. (10)
can be written in the form

H = −1
2
kBTρ2

∫
dr1

∑
ν,μ

∫ ∞

1

C2(r′νμ)(r′νμ)2

×
(∫

Δf(x1)Δf(x2)σ3
νμ dx1 dx2

)
dr′νμ duνμ,

(13)

where only the product Δf(x1)Δf(x2)σ3
νμ depends on the

orientational variables x1, x2. Equation (13) describes the
reduced free energy of an inhomogeneous nematic phase.
The distortion free energy can be separated from the free
energy of the homogeneous state by employing the gra-
dient expansion of the orientational distribution function

f(x,n(r2)) around the point r1:

f(x,n(r2)) = f(x,n(r1)) + (r12 · ∇)f((a · n)2, (b · n)2)

+
1
2
(r12 · ∇)2f((a · n)2, (b · n)2) + . . . .

(14)

Neglecting the terms linear in gradients (which only con-
tribute to the free energy of chiral nematics), eq. (14) can
be rewritten as

f(x,n(r2)) − f(x,n(r1)) ≈
1
2

∂f

∂n
· (r12 · ∇)2n

+
1
2

∂2f

∂n2
: ((r12 · ∇)n)2.

(15)

In this paper we will limit ourselves to the terms
quadratic in aν , aμ and therefore will only employ the
quadrupolar orientational order parameters S = 〈P2(a·n)〉
and D = 〈P2(b · n) − P2(c · n)〉. In eq. (15) r12 =
rνμ ± (L/2)(aν − aμ). However, the second term in this
equation can be neglected in the first approximation as
it results in additional terms in the free energy which are
higher order in aν , aμ. Substituting r12 = rνμσνμ and
u12 = uνμ into eqs. (15), (13), one obtains the follow-
ing expression for the free energy of the inhomogeneous
nematic:

F = F0 +
∫

Fd(r)dr, (16)

where F0 is the free energy of the homogeneous nematic
and the distortion free energy Fd is expressed as

Fd(r) = −1
2
kBTρ2λ

∑
ν,μ

∫
σ5

νμf(x1)
(

∂f

∂n
· (uνμ · ∇)2n

+
∂2f

∂n2
: ((uνμ · ∇)n)2

)
dx1 dx2 duνμ, (17)

where
λ = −

∫ ∞

1

C2(r)r5 dr.

The derivatives in eq. (17) with respect to the director
n can be taken out of the integral over x2:

Fd(r) =
1
2
kBTρ2λ

∑
ν,μ

∫
dx1f(x1)

×
(

∂

∂n

∫
f(x2)σ5

νμ · (uνμ · ∇)2ndx2 duνμ

+
∂2

∂n2
:
∫

f(x2)σ5
νμ((uνμ · ∇)n)2

)
dx2 duνμ.

(18)

In eq. (18) the function σνμ depends only on (aν · uνμ)
and (aμ · uνμ) and thus it can be expanded in Legendre
polynomials Pn(aν · uνμ) and Pn(aμ · uνμ). The lowest-
order term which contributes to the elastic constants is
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proportional to the product P2(aν · uνμ)P2(aμ · uνμ) as
the relevant contributions must depend both on aν and
aμ. The corresponding term in the expansion of σ5

νμ comes
with the following coefficient:

20
9

d3(L − d)2P2(aν · uνμ)P2(aμ · uνμ). (19)

Substituting eq. (19) into (18) one obtains

Fd(r) = kBTρ2λS̃2κP2(u · n)
∫ (

∂P2(u · n)
∂n

· (u · ∇)2n

+
∂2P2(u · n)

∂n2
: ((u · ∇)n)2

)
du

= 3kBTρ2λS̃2κP2(u · n)
∫ (

(u · n)(u · (u · ∇)2n)

+ (u · (u · ∇)n)2
)
du, (20)

where
κ =

20
9

d3(L − d)2, (21)

and where we have taken into consideration that in the
first approximation uνμ = u. Here the order parameter S̃
is expressed as

S̃ = 〈P2(ai · n)〉 =
3
2
〈(a · n)2〉 cos2 α +

3
2
〈(b · n)2〉 sin2 α

−1
2

= S cos2 α +
1
2
(1 − S + D) sin2 α, (22)

where ai = ±a cos α + b sin α is the unit vector in the
direction of the long axis of an arm i and where a and b
is the long and short axis of the whole bent-core molecule,
respectively. Here S = 〈P2(a · n)〉 and D = 〈(b · n)2〉 −
〈(c ·n)2〉 are the two orientational order parameters of the
biaxial bent-core molecule in the uniaxial nematic phase
and c is the second short molecular axis.

One notes that the first term in eq. (20) contains sec-
ond derivatives of the director while the distortion free
energy depends only of the square of the first derivatives.
This is related to the fact that eq. (20) contains both bulk
and surface elasticity of the nematic. The surface and bulk
contributions can be separated by taking the integral of
the first term in eq. (20) over r1 by parts in the expres-
sion for the total distortion energy of the whole sample
Fd =

∫
Fd(r)dr:∫ [
3kBTρ2λS̃2κP2(u · n)

×
∫

(u · n)(u · (u · ∇)2n)du
]
dr =

−
∫ [

3kBTρ2λS̃2κ

∫ (
P2(u · n) + (u · n)2

)

×((u · (u · ∇)n))
]
dr + (surface terms). (23)

The first term in eq. (23) depends on the square of the first
derivatives of the director and describes a contribution to
the bulk distortion free energy of the nematic phase.

Now eqs. (20) and (23) can be used to obtain explicit
expressions for the elastic constants. As shown in [30], in
the case of a slow variation of the director in the (x, z)
plane the only non-zero gradients for the splay, twist
and bend deformations are ∇xnx = q, ∇ynx = q and
∇znx = q, respectively. Substituting these expressions in
to eq. (23) one obtains explicit expressions for the elastic
constants:

K11 =
1
4
kBTρ2λS̃2κ

∫
du

×
(

3P2(uz)u4
x − 9

2
u2

zu
4
x +

1
2
u4

x

)
; (24)

K22 =
1
4
kBTρ2λS̃2κ

∫
du

×
(

3P2(uz)u2
xu2

y − 9
2
u2

zu
2
xu2

y +
1
2
u2

xu2
y

)
; (25)

K33 =
1
4
kBTρ2λS̃2κ

∫
du

×
(

2P2(uz)u2
xu2

z −
9
2
u4

zu
2
x +

1
2
u2

xu2
z

)
. (26)

Taking integrals over u one obtains final expressions for
the elastic constants in the relatively simple form:

K11 = −kBT
π

5
ρ2λκS̃2, (27)

and
K22 = K33 = −kBT

π

15
ρ2λκS̃2. (28)

The corresponding figures of these elastic constants
are presented in fig. 2, where we have introduced the
parameter ρ∗ = ρd2L which allows to draw all curves
in reduced (depending only on parameter α) variables
Kred

ii = d
−λtJ(ρ∗)2 Kii as a function of dimensionless tem-

perature t = kBT
J for Maier-Saupe dependence of S(t)

and S̃(t). In these figures the expected result is with de-
creasing opening angle of bent-core particle, that is larger
value of angle α, the absolute values of elastic constants
are also decreasing, consequently providing maximum for
rodlike shapes. In this approximation K22 = K33, and
this is related to the fact that we have taken into ac-
count only terms quadratic in a. It is well known that
the difference between K22 and K33 is determined by the
higher orientational order parameters including, in partic-
ular, 〈P4(a ·n)〉. However, equations present the so called
“bare” elastic constants which have not been renormal-
ized by the flexoelectric effect. Our final expressions for
the elastic constants, presented in the following section,
distinguish between K22 and K33.

4 Theory of the flexoelectric effect in
bent-core nematics

In the distorted liquid crystal the orientational distribu-
tion function is modified, and in the case of small orienta-
tional deformation it contains a small correction h(a,b,n)
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a)

b)

Fig. 2. (Color online) Reduced splay (a) twist and bend (b)
elastic constants Kred

ii = d
−λtJ(ρ∗)2

Kii, where Kii are given by

eq. (27) and eq. (28) for L = 2.5d and for four opening angles
from the very top: 180◦ (red), 160◦ (green), 140◦ (orange) and
120◦ (blue), which correspond to parameter α equal to 0, π

18
,

π
9

and π
6
, respectively.

which is generally polar:

f(a,b,n) = f0(a,b,n) (1 + h(a,b,n)) , (29)

where f0(a,b,n) is the orientational distribution function
of the undistorted nematic phase and the small correc-
tion h = hf + hp is a sum of two terms. The function
hf ∼ ∇αnβ is proportional to the gradients of the direc-
tor while the function hp ∼ 〈b〉 is proportional to the
polar order parameter 〈b〉 which determines the polariza-
tion due to the polar ordering of short molecular axes. One
notes that another polar order parameter 〈a〉 = 0 because
a is always equivalent to −a due to the C2v symmetry of
a bent-core molecule. Then the average molecular dipole
in the distorted nematic phase can be expressed as:

〈d〉 =
∫

df0(a,b,n)h(a,b,n)dbda, (30)

where the molecular dipole

d = μ⊥b. (31)

Here the polar correction to the orientational distribution
function h(a,b,n) should be determined using a corre-
sponding molecular-statistical theory.

The one-particle distribution function of the distorted
liquid crystal can be determined by minimization of the
free energy with respect to f(ω) taking into account the
normalization condition. One obtains

δ

(
F + λ

∫
ρ(ω)dω

)
δρ(ω) = −kBTC1(ω) + kBT ln f(ω)

+Λ + λ = 0, (32)

where the lagrange multiplier λ is determined from the
normalization condition, f(ω) is the one-particle distri-
bution of the distorted nematic, given by eq. (29) and
C1(ω) is the one-particle correlation function. Let us now
perform the functional Taylor expansion of the function
C1(ρ(ω)) in the right hand side of eq. (32) about the local
distribution f0(ω):

C1(ρ) = C1(ρ0(ω)) + ρ

∫
C2(ρ0(ω1), ρ0(ω2))

× (f(ω2) − f0(ω2)) dω2 + . . . , (33)

where C2(ρ0(ω1), ρ0(ω2)) is the pair direct correlation
function. One notes that he higher-order terms in the ex-
pansion (which are determined by higher-order direct cor-
relation functions) do not contribute to the flexoelectric
effect because they are proportional to the higher powers
of (f(ω2)− f0(ω2)) and hence to the higher powers of the
orientational deformation.

The difference (f(ω2) − f0(ω2)) in the second term
in the right hand side of eq. (33) can be expressed as
(f(ω) − f0(ω)) = f0((a · n)2, (b · n)2)h(ω) by using
eq. (29). Performing the gradient expansion of the function
f0((a · n)2, (b · n)2) to the first order, one finally obtains

(f(ω) − f0(ω)) = (r12 · ∇)f0((a · n)2, (b · n)2)
+f0((a · n)2, (b · n)2)h(ω). (34)

Substituting eq. (34) into eq. (33) and then into the gen-
eral eq. (32) and expanding ln f in eq. (32) to the first
order of the small function h one obtains the following
integral equation for the correction h(ω):

h(x1) = ρ

∫
C2(x1,x2, r12)(r12 · ∇)

×f0((a · n)2, (b · n)2)dx2 dr12

+ ρ

∫
C2(x1,x2, r12)f0((a · n)2, (b · n)2)

×h(x2)dx2 dr12, (35)

where x = (a,b).
In the general case the correction h(a,b) is a sum of

the “symmetric” and the “antisymmetric” parts:

h(a,b) = hs(a,b) + ha(a,b), (36)

where the symmetric part hs(a,b) is non-polar, i.e. it is
invariant under the transformation b → −b while the
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antisymmetric part ha(a,b) changes sign under such a
transformation. The flexoelectric effect is determined only
by the antisymmetric function ha(a,b) which is sensitive
to the direction of the molecular dipole. Equation (35)
can now be split into two independent equations for the
functions hs(a,b) and ha(a,b). Because the last term in
eq. (35) vanishes when h(a,b) = ha(a,b) provided the di-
rect correlation function C2(x1,x2, r12) is non-polar. On
the other hand, in the system of polar molecules the direct
correlation function should contain a polar contribution
which is determined both by polar molecular shape and
dipolar intermolecular interactions. Thus the last term
contributes to the equation for the polar correction to the
distribution function.

In this section we assume that the direct correlation
function can be expressed as

C2I(x1, r12,x2) ≈
∑
ν,μ

C2

(
rνμ

σνμ

)

− 1
kBT

Θ(r12 − d)Udd(b1,b2, r12),

(37)

where the first term is a sum of the correlation functions
between different arms of the two molecules expressed in
the Parsons-Lee approximation (see eq. (12)), Θ(r12 − d)
is the step function which describes the steric cut-off and
the second term is the dipole-dipole interaction potential
for bent-core molecules. Let us first consider the contri-
bution from the dipole-dipole interaction to the second
term in eq. (37). It should be noted that the dipole-dipole
interaction is long range and one should be careful in av-
eraging it over all positions and orientations of the polar
molecules. As shown in our previous paper [39], the corre-
sponding averaging in the polar nematic phase results in
the following expression:

ρ

∫
Θ(r12 − d)Udd(b1,b2, r12)f0((a2 · n)2, (b2 · n)2)

×h(x2)dx2 dr12 =

−4π

3
μ⊥(b1 · P) − μ⊥(b1 · E), (38)

where E is the average electric field in the medium and the
polarization P = 〈ρμ⊥b〉. The contribution of the dipole-
dipole interaction to the first term in eq. (35) vanishes
because the dipolar potential is quadratic in u12 while the
factor (r12 ·∇) is odd in u12 and therefore the contribution
vanishes after integration over u12.

In the first term in eq. (35) the integrand depends both
on the intermolecular vector r12 and on the vector rij(=
rμν). However, in this case one cannot approximately set
r12 = rij because as a result of this all polar terms, which
contribute to flexoelectricity, will disappear. The vectors
r12 and rij can be written in the form r12 = r12u12 and
rij = rijuij = σijr

′
ijuij , where the difference between

the unit vectors uij and u12 can be neglected because the
integration is performed over the whole unit sphere. At the
same time the difference between the modulus r12 and rij

should be taken into consideration using the relationship
r12 = rij+L(ai−aj)/2 The modulus r12 can be exressed as

r12 =
[
r2
ij +

L2

2
(1 − (ai · aj)) + Lrij ((ai · uij)

− (aj · uij))
]1/2

, (39)

and the differential dr12 can be written in the form:

dr12 =
dr12

drij
drij =

rij + L ((ai · uij) − (aj · uij))[
r2
ij + L2

2 (1 − (ai · aj)) + Lrij ((ai · uij) − (aj · uij))
]1/2

×drij . (40)

Finally one obtains the following expression for r2
12 dr12

which enters the integrals in (35):

r2
12 dr12 = [rij + L ((ai · uij) − (aj · uij))]

×
[
r2
ij +

L2

2
(1 − (ai · aj)) + Lrij ((ai · uij)

− (aj · uij))
]1/2

drij . (41)

Expanding eq. (41) in power of L/rij one obtains

r2
12 dr12 ≈ r2

ij

[
1 +

3
2

L

rij
((ai · uij) − (aj · uij))

+
L2

4r2
ij

(1 − (ai · aj))
]
drij . (42)

One notes that the middle term in brackets of eq. (42) is
polar and odd in uij and thus they should contribute to
the polar correction ha of the orientational distribution
function.

Substituting eq. (42) and the equation r12 = rij +
L(ai − aj)/2 into the first term in eq. (35), neglecting
cubic terms in ai and aj and taking into account that only
terms, which are odd in uij , contribute to the integral, one
obtains the following expression:

−3
2
ρλ2

∑
ij

∫
σ3

ijL ((ai · uij) − (aj · uij)) (uij · ∇)

×f0((a2 · n)2, (b2 · n)2)da2 db2 duij , (43)

where
λ2 =

∫ ∞

1

C2(rij)r2
ij drij . (44)

Similar to sect. 3, the lowest-order term in the expansion of
σ3

ij which contributes to the integral is (L−d)2(d/3)P2(aν ·
uνμ)P2(aμ · uνμ) and thus eq. (43) can approximately be
expressed as

−ρ

2
Ld(L − d)2λ2

∑
ij

∫
P2(aν · uνμ)P2(aμ · uνμ)

× ((ai · uij) − (aj · uij)) (uij · ∇)

×f0((a2 · n)2, (b2 · n)2)da2 db2 duij . (45)
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Finally, we consider the contribution of the direct cor-
relation function between different molecular arms to the
second term in the general eq. (35). One notes that the
function h(b2,a2) under the integral is polar in b2 and,
in contrast to the first term in the same equation, there is
no factor linear in uij . As a result, in eq. (35) only terms
which are odd in b2 and even in uij make a non-zero
contribution. Substituting eq. (42) and the first term in
eq. (37) into the second term in eq. (35) one obtains the
following contribution:

−ρλ3

∑
ij

∫
σij

L2

4
(ai · aj)f0((a2 · n)2, (b2 · n)2)

×h(b2,a2)da2 db2 duij , (46)

where
λ3 =

∫ ∞

1

C2(rij)drij , (47)

and where σij is given by eq. (11).
One notes that the product (ai ·aj) can be expressed as

(ai · aj) = cos2 α(a1 · a2) ± cos α sinα

× ((a1 · b2) + (a2 · b1)) + sin2 α(b1 · b2).

In this expression only the last term, which is polar both
in b1 and b2, makes a non-zero contribution. Other terms
vanish after averaging over b2 or b1 in the final expression
for the spontaneous polarization.

Combining eqs. (38), (43), (46) then polar correction to
the orientational distribution function of the polar bent-
core nematic can be expressed as:

ha(b1,a1) =
4π

3kBT
μ⊥(b1 · P) +

1
kBT

μ⊥(b1 · E)

− ρ

12
L2(L − d)λ3

∫ [
(a1 · u)2 + (a2 · u)2

]
× sin2 α(b1 · b2)f0((a2 · n)2, (b2 · n)2)
×h(b2,a2)da2 db2 du

−1
2
ρLd(L − d)2λ2

∫
P2(a2 · u)P2(a1 · u)

× ((a1 · u) − (a2 · u)) (u · ∇)
×f0((a2 · n)2, (b2 · n)2)da2 db2 du. (48)

Now the polarization P can be expressed as:

P = ρ

∫
μ⊥bf0((a · n)2, (b · n)2)h(b,a)da db

=
π

3
ρμ2

⊥
2kBT

P +
ρμ2

⊥
2kBT

E

−1
2
ρ2μ⊥λ2 sin αLd(L − d)S̃2

∫
1
2

[
1
3
(2 + S)u

−Sn(n · u)
]
P2(n · u)(u · ∇)P2(n · u)du

+
1
24

ρλ3 sin2 αL2(L − d)S̃
∫ [

1
3
(2 + S)P

−Sn(n · P)
]
(n · u)2 du, (49)

where (u ·∇)P2(n ·u) = 3(n ·u)(u ·∇)(n ·u). Here we have
decoupled the averages over short and long molecular axes
(thus neglecting the corresponding third rank polar order
parameters). In this case 〈bαbβ〉 = (δαβ − 〈aαaβ〉)/2 =
[(1/3)(2 + S)δαβ − Snαnβ ] if the order parameter D = 0.

Let us assume for simplicity that the director varies
slowly in the (x, z) plane and that the local director n‖z.
Then in the case of pure splay the flexoelectric polarization
P‖n‖z and the only non-zero component of splay is ∇xnx.
In this case P = Pz = ẽ11∇xnx, where ẽ11 is the effective
splay flexocoefficient. Substituting these components into
eq. (49) and integrating over u one obtains the following
expression for ẽ11:

ẽ11 = e11

(
1 − 1

3
(4πχ0 − 2(1 + 2S)A0 sin2(α))

)−1

,

(50)
where

A0 =
ρλ3

108
L2(L − d) =

ρ∗λ3

108
L(L − d)

d2
≡ ε

108
L(L − d)

d2
,

(51)
and

χ0 =
ρμ2

⊥
kBT

=
ρμ2

⊥
tJ

≡ ψ0

t
. (52)

Here e11 is the so called bare flexoelectric coefficient, which
enters the equations of the phenomenological theory and
which is obtained by neglecting the last two terms in the
denominator in eq. (50):

e11 = − 8π

315
νχ−1

0 sin(α)S̃2(1 − S), (53)

where
ν =

2
3
ρ2λ2μ⊥dL(L − d)2. (54)

In the case of pure bend P‖x⊥n and the only non-zero
component of bend is ∇znx. Here P = Px = ẽ33∇znx,
where ẽ33 is the effective bend flexocoefficient. Substitut-
ing these components into eq. (49) one obtains the follow-
ing expression for ẽ33:

ẽ33 = e33

(
1 − 1

3
(4πχ0 − (2 + S)A0 sin2(α))

)−1

, (55)

where e33 is the undressed bend flexocoefficient:

e33 = − 8π

315
νχ−1

0 sin(α)S̃2(2 + S). (56)

The effective and undressed flexocoefficients are pre-
sented in the reduced form divided by the factor 8π

315ν,
which makes the bare coefficients depending only on pa-
rameter α and dimensionless temperature t. Additionally
for the effective flexocoefficients we also introduce the pa-
rameters ρ∗ = ρd2L, ε and ψ0 which are defined in the
eqs. (51) and (52) respectively. The results for bare flex-
ocoefficients are presented in fig. 3, where the red line
is the reference of rod-like particle with zero value. The
absolute values of e33 are approximately an order of mag-
nitude larger than e11, and as expected the latter goes to
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a)

b)

Fig. 3. (Color online) Reduced splay (a) and bend (b) flex-
oelectric coefficients ered

ii = 315χ0
8πν

eii, where eii are given by
eq. (53) and eq. (56), for four opening angles from the very
top: 180◦ (red), 160◦ (green), 140◦ (orange) and 120◦ (blue),
which correspond to parameter α equal to 0, π

18
, π

9
and π

6
,

respectively.

zero when temperature reaches zero. The dressed flexoco-
efficients are also obtained as the same reduced variables
for various values of ψ0 and presented for α = π

6 , L = 2.5d
and ε = 75 in fig. 4 and fig. 5. In these figures flexoelectric
coefficients tend to diverge at the temperature within the
nematic phase range, which is caused by a transition to
the possibly virtual polar state and indeed it is governed
by a larger value of ψ0, that is by stronger dipole-dipole in-
teractions eq. (52). Here we present outcomes for just one
opening angle, as the effect is the same for other values of
parameter α. The role of ε is also secondary, because it af-
fects mainly how fast flexocoefficients diverge, that is the
steepness of curves in fig. 4 and fig. 5. In the next section
we present how this effect influences the elastic properties
in this model of bent-core molecules.

5 Effective elastic constants

Equation (49) for the polarization P can also be used to
obtain the longitudinal and the transverse components of

Fig. 4. (Color online) Effective reduced splay flexoelectric co-
efficients ẽred

11 = 315χ0
8πν

ẽ11, where ẽ11 are given by eq. (50) for
three values of ψ0 from the very top: 0.003 (blue), 0.006 (or-
ange) and 0.009 (green). The other parameters of the model
are ε = 75, L = 2.5d and α = π

6
.

Fig. 5. (Color online) Effective reduced bend flexoelectric co-
efficients ẽred

33 = 315χ0
8πν

ẽ33, where ẽ33 are given by eq. (55) for
three values of ψ0 from the very top: 0.003 (blue), 0.006 (or-
ange) and 0.009 (green). The other parameters of the model
are ε = 75, L = 2.5d and α = π

6
.

the dielectric susceptibility:

χ‖ = χ0

(
1 − 1

3
(4πχ0 − 2(1 + 2S)A0 sin2(α))

)−1

, (57)

and

χ⊥ = χ0

(
1 − 1

3
(4πχ0 − (2 + S)A0 sin2(α))

)−1

, (58)

Now the effective elastic constants are given by the fol-
lowing equations:

K̃11 = K11 −
1
2
χ‖e

2
11; K̃33 = K33 −

1
2
χ⊥e2

33, (59)

where the bare elastic constants are given by eqs. (53)
and (56), and χ0 is expressed by eq. (52).

The so-called bare elastic constants, given by eqs. (27)
and (28), are presented in fig. 2. The bare constants are
not renormalized by the polar intermolecular interactions
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Fig. 6. (Color online) Effective reduced splay elastic constant
K̃red

11 = d
−λtJ(ρ∗)2

K̃11, where K̃11 are given by eq. (59) for three

values of ψ0: 0.003 (blue), 0.006 (orange) and 0.009 (green),
which coincide and are indistinguishable from the bare K11

shown in fig. 2(a). The other parameters of the model are ε =
75, L = 2.5d and α = π

6
.

Fig. 7. (Color online) Effective reduced bend elastic constant
K̃red

33 = d
−λtJ(ρ∗)2

K̃33, where K̃33 are given by eq. (59) for three

values of ψ0 from the very top: 0.003 (blue), 0.006 (orange) and
0.009 (green). The other parameters of the model are ε = 75,
L = 2.5d and α = π

6
.

and as a result they possess a standard temperature de-
pendence, i.e. grow monotonically with the decreasing
temperature. This growth is mainly determined by the
increase of the nematic order parameter S. The bare flex-
oelectric coefficients presented in fig. 3 also are not char-
acterized by any unexpected temperature variation. The
bend coefficient is increasing with the decreasing temper-
ature, while the splay coefficient decreases. This decrease
is determined by the factor (S − 1) in eq. (53) which van-
ishes when S = 1. This is related to the fact that in our
molecular model the bent-core molecule possesses only the
transverse dipole. In the case of perfect orientational or-
der all transverse dipoles are perpendicular to the director
and hence the splay flexoelectric polarization must vanish.

In contrast, the effective flexocoefficients behave in a
different way. One can readily see from fig. 4 that the val-
ues of the splay flexocoefficient practically do not differ

Fig. 8. (Color online) Effective reduced elastic constant
K̃red

ii = d
−λtJ(ρ∗)2

K̃ii obtained for ε = 75, L = 2.5d, α = π
6

and ψ0 = 0.009, where the red curve is for splay elastic con-
stants, blue and green lines for, respectively, bare and effective
bend elastic constants.

from those of the bare one, while the bend coefficient is
much bigger than the bare one and formally diverges at
some low temperature. This divergence is determined by
the factor (1− 1

3 (4πχ0 − (2 + S)A0 sin2(α)))−1 in eq. (55)
which is determined by polar intermolecular interactions.
The divergence point can be interpreted as a temperature
of a transition into the virtual ferroelectric phase. In real
systems such a transition never occurs because the mate-
rial crystallizes or undergoes a transition into the smectic
phase. Thus the anomalously large values of the bend flex-
ocoefficient are determined by a “pretransitional effect”.

As a result the absolute value of the negative flexo-
electric contribution to the effective bend elastic constant
appears to be rather large at sufficiently low temperatures.
The bend elastic constant is very small everywhere in the
nematic phase and approaches zero at some temperature
as shown in fig. 7. Here the effective elastic constants are
plotted in reduced units, i.e. K̃red

ii = d
−λtJ(ρ∗)2 K̃ii pro-

vided that λ2 = −λ. Different curves correspond to dif-
ferent values of the parameter ψ0, whole the remaining
parameters of the model are: α = π

6 , L = 2.5d and ε = 75.
One notes that due to the anisotropy of the nematic

phase the factors (1− 1
3 (4πχ0− (2+S)A0 sin2(α)))−1 and

(1 − 1
3 (4πχ0 − 2(1 + 2S)A0 sin2(α)))−1 in the equations

for the bend and splay flexocoefficients, respectively may
behave in a qualitatively different way. In particular, for
small values of ψ0 the second term in the denominator of
the latter factor is negative and therefore the factor does
not diverge. In this case the splay flexocoefficient remains
small and the effective splay elastic constant is approxi-
mately equal to the bare elastic constant as can be seen in
fig. 6 and fig. 2(a). For larger values of the parameter ψ0

the bend elastic constant is smaller. Taking into account
that ψ0, given by eq. (52), is proportional to the square of
the molecular electric dipole, one concludes that the ab-
normally small values of the bend elastic constant may be
promoted by increasing the electric dipole of a bent-core
molecule.
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In fig. 8 both splay and bend effective elastic constants
are presented in the same units. One can readily see that
the splay constant behaves in a standard way, i.e. it in-
creases monotonically with the decreasing temperature,
while the bend constant is everywhere very small and
approaches zero at some temperature. This behavior is
qualitatively very similar to the one observed for instance
in [3, 8, 15].

6 Discussion

In this paper we have developed a molecular-statistical
theory of both flexoelectricity and the elastic constants
of the nematic composed of bent-core molecules using the
same molecular model and the Parsons-Lee approximation
for intermolecular correlations. It has been shown that po-
lar intermolecular interactions, including the electrostatic
dipole-dipole interactions, make a significant contribution
to the flexoelectric coefficients. If this contribution is not
taken into consideration, however, the flexocoefficients ap-
pear to be moderately large and possess standard tem-
perature variation. On the other hand, sufficiently strong
polar interactions between bent-core molecules result in a
dramatic increase of the bend flexocoefficient which may
even diverge at a certain low temperature which corre-
sponds to a transition into the virtual ferroelectric phase.
One notes, however, that this phase is never observed be-
cause the corresponding transition temperature is far be-
low the nematic range. At the same time the splay flexo-
coefficient is only weakly renormalized.

As a result the flexoelectric correction to the splay elas-
tic constant is very small and thus this constant is practi-
cally not affected by polar interactions between bent-core
molecules. In contrast, the flexoelectric correction to the
bend elastic constant may be sufficiently large which re-
sults in a very low values of the bend constant throughout
the nematic range. The negative flexoelectric correction
may even drive the bend elastic constant at some temper-
ature which corresponds to an elastic instability leading
to a transition into the twist-bend phase [12, 16]. These
results correspond to the existing experimental data.

It should be noted that in the general framework of
the Selinger model [16], which has been investigated here
from the molecular point if view, the abnormally large
values of the flexocoefficients are related to the “pretran-
sitional” increase of the mean-field dielectric susceptibility
which is not generally observed in bent-core nematics [40].
On the other hand, molecular theory of the dielectric con-
stant of nematic LCs should be more complicated because
dipole-dipole correlations are expected to give a significant
contribution. However, in some bent-core nematics the di-
electric constant possesses a very weak temperature vari-
ation in the vicinity of the transition into the TB phase.
This contradiction may be resolved if one takes into con-
sideration that the present theory in its general form is
valid even if the molecules do not possess electric dipoles
at all. Bent-core molecules generally possess transverse
steric dipoles which will promote some polar intermolecu-
lar interactions. These interactions in turn, determine the

polar correction to the orientational distribution function
which contributes to the bend elastic constant leading to
its reduction. This may explain why “negative” values of
the elastic constants have been obtained by Ferrarini et
al. [22].
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Ewa Gorecka, Phys. Rev. E 93, 022704 (2016).
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