19 research outputs found

    Genotoxic effect induced by hydrogen peroxide in human hepatoma cells using comet assay

    Get PDF
    Background: Hydrogen peroxide is a common reactive oxygen intermediate generated by variousforms of oxidative stress. Aims: The aim of this study was to investigate the DNA damage capacity ofH2O2 in HepG2 cells. Methods: Cells were treated with H2O2 at concentrations of 25 μM or 50 μM for5 min, 30 min, 40 min, 1 h or 24 h in parallel. The extent of DNA damage was assessed by the cometassay. Results: Compared to the control, DNA damage by 25 μM and 50 μM H2O2 increasedsignificantly with increasing incubation time up to 1 h, but it was not increased at 24 h. Conclusions:Our Findings confirm that H2O2 is a typical DNA damage inducing agent and thus is a good modelsystem to study the effects of oxidative stress. DNA damage in HepG2 cells increased significantlywith H2O2 concentration and time of incubation but later decreased likely due to DNA repairmechanisms and antioxidant enzyme

    Effects of Common Forage Phenolic Acids on \u3ci\u3eEscherichia coli\u3c/i\u3e O157:H7 Viability in Bovine Feces

    Get PDF
    Ruminant animals are carriers of Escherichia coli O157:H7, and the transmission of E. coli O157:H7 from cattle to the environment and to humans is a concern. It is unclear if diet can influence the survivability of E. coliO157:H7 in the gastrointestinal system or in feces in the environment. Feces from cattle fed bromegrass hay or corn silage diets were inoculated with E. coliO157:H7, and the survival of this pathogen was analyzed. When animals consumed bromegrass hay for \u3c1 month, viable E. coliO157:H7 was not recovered after 28 days postinoculation, but when animals consumed the diet for \u3e1 month, E. coli O157:H7 cells were recovered for \u3e120 days. Viable E. coli O157:H7 cells in feces from animals fed corn silage were detected until day 45 and differed little with the time on the diet. To determine if forage phenolic acids affected the viability of E. coli O157:H7, feces from animals fed corn silage or cracked corn were amended with common forage phenolic acids. When 0.5% trans-cinnamic acid or 0.5% para-coumaric acid was added to feces from silage-fed animals, the E. coli O157:H7 death rate was increased significantly (17-fold and 23-fold, respectively) compared to that with no addition. In feces from animals fed cracked corn, E. coli O157:H7 death rates were increased significantly with the addition of 0.1% and 0.5% trans-cinnamic acid (7- and 13-fold), 0.1% and 0.5% p-coumaric acid (3- and 8-fold), and 0.5% ferulic acid (3-fold). These data suggest that phenolic acids common to forage plants can decrease viable counts of E. coli O157:H7 shed in feces

    Anaerobic fermentation of beef cattle manure. Final report

    Get PDF
    The research to convert livestock manure and crop residues into methane and a high protein feed ingredient by thermophilic anaerobic fermentation are summarized. The major biological and operational factors involved in methanogenesis were discussed, and a kinetic model that describes the fermentation process was presented. Substrate biodegradability, fermentation temperature, and influent substrate concentration were shown to have significant effects on CH/sub 4/ production rate. The kinetic model predicted methane production rates of existing pilot and full-scale fermentation systems to within 15%. The highest methane production rate achieved by the fermenter was 4.7 L CH/sub 4//L fermenter day. This is the highest rate reported in the literature and about 4 times higher than other pilot or full-scale systems fermenting livestock manures. Assessment of the energy requirements for anaerobic fermentation systems showed that the major energy requirement for a thermophilic system was for maintaining the fermenter temperature. The next major energy consumption was due to the mixing of the influent slurry and fermenter liquor. An approach to optimizing anaerobic fermenter designs by selecting design criteria that maximize the net energy production per unit cost was presented. Based on the results, we believe that the economics of anaerobic fermentation is sufficiently favorable for farm-scale demonstration of this technology
    corecore