16 research outputs found

    The LIL for UU-statistics in Hilbert spaces

    Full text link
    We give necessary and sufficient conditions for the (bounded) law of the iterated logarithm for UU-statistics in Hilbert spaces. As a tool we also develop moment and tail estimates for canonical Hilbert-space valued UU-statistics of arbitrary order, which are of independent interest

    Transference Principles for Log-Sobolev and Spectral-Gap with Applications to Conservative Spin Systems

    Full text link
    We obtain new principles for transferring log-Sobolev and Spectral-Gap inequalities from a source metric-measure space to a target one, when the curvature of the target space is bounded from below. As our main application, we obtain explicit estimates for the log-Sobolev and Spectral-Gap constants of various conservative spin system models, consisting of non-interacting and weakly-interacting particles, constrained to conserve the mean-spin. When the self-interaction is a perturbation of a strongly convex potential, this partially recovers and partially extends previous results of Caputo, Chafa\"{\i}, Grunewald, Landim, Lu, Menz, Otto, Panizo, Villani, Westdickenberg and Yau. When the self-interaction is only assumed to be (non-strongly) convex, as in the case of the two-sided exponential measure, we obtain sharp estimates on the system's spectral-gap as a function of the mean-spin, independently of the size of the system.Comment: 57 page

    User-friendly tail bounds for sums of random matrices

    Get PDF
    This paper presents new probability inequalities for sums of independent, random, self-adjoint matrices. These results place simple and easily verifiable hypotheses on the summands, and they deliver strong conclusions about the large-deviation behavior of the maximum eigenvalue of the sum. Tail bounds for the norm of a sum of random rectangular matrices follow as an immediate corollary. The proof techniques also yield some information about matrix-valued martingales. In other words, this paper provides noncommutative generalizations of the classical bounds associated with the names Azuma, Bennett, Bernstein, Chernoff, Hoeffding, and McDiarmid. The matrix inequalities promise the same diversity of application, ease of use, and strength of conclusion that have made the scalar inequalities so valuable.Comment: Current paper is the version of record. The material on Freedman's inequality has been moved to a separate note; other martingale bounds are described in Caltech ACM Report 2011-0
    corecore