55 research outputs found

    Forest processes from stands to landscapes: exploring model forecast uncertainties using cross-scale model comparison

    Get PDF
    Forest management practices conducted primarily at the stand scale result in simplified forests with regeneration problems and low structural and biological diversity. Landscape models have been used to help design management strategies to address these problems. However, there remains a great deal of uncertainty that the actual management practices result in the desired sustainable landscape structure. To investigate our ability to meet sustainable forest management goals across scales, we assessed how two models of forest dynamics, a scaled-up individual-tree model and a landscape model, simulate forest dynamics under three types of harvesting regimes: clearcut, gap, and uniform thinning. Althougth 50– 100 year forecasts predicted average successional patterns that differed by less than 20% between models, understory dynamics of the landscape model were simplified relative to the scaled-up tree model, whereas successional patterns of the scaled-up tree model deviated from empirical studies on the driest and wettest landtypes. The scale dependencies of both models revealed important weaknesses when the models were used alone; however, when used together, they could provide a heuristic method that could improve our ability to design sustainable forest management practices

    Can forest management based on natural disturbances maintain ecological resilience?

    Get PDF
    Given the increasingly global stresses on forests, many ecologists argue that managers must maintain ecological resilience: the capacity of ecosystems to absorb disturbances without undergoing fundamental change. In this review we ask: Can the emerging paradigm of natural-disturbance-based management (NDBM) maintain ecological resilience in managed forests? Applying resilience theory requires careful articulation of the ecosystem state under consideration, the disturbances and stresses that affect the persistence of possible alternative states, and the spatial and temporal scales of management relevance. Implementing NDBM while maintaining resilience means recognizing that (i) biodiversity is important for long-term ecosystem persistence, (ii) natural disturbances play a critical role as a generator of structural and compositional heterogeneity at multiple scales, and (iii) traditional management tends to produce forests more homogeneous than those disturbed naturally and increases the likelihood of unexpected catastrophic change by constraining variation of key environmental processes. NDBM may maintain resilience if silvicultural strategies retain the structures and processes that perpetuate desired states while reducing those that enhance resilience of undesirable states. Such strategies require an understanding of harvesting impacts on slow ecosystem processes, such as seed-bank or nutrient dynamics, which in the long term can lead to ecological surprises by altering the forest's capacity to reorganize after disturbance
    • …
    corecore