4 research outputs found

    Examples of Artificial Perceptions in Optical Character Recognition and Iris Recognition

    Full text link
    This paper assumes the hypothesis that human learning is perception based, and consequently, the learning process and perceptions should not be represented and investigated independently or modeled in different simulation spaces. In order to keep the analogy between the artificial and human learning, the former is assumed here as being based on the artificial perception. Hence, instead of choosing to apply or develop a Computational Theory of (human) Perceptions, we choose to mirror the human perceptions in a numeric (computational) space as artificial perceptions and to analyze the interdependence between artificial learning and artificial perception in the same numeric space, using one of the simplest tools of Artificial Intelligence and Soft Computing, namely the perceptrons. As practical applications, we choose to work around two examples: Optical Character Recognition and Iris Recognition. In both cases a simple Turing test shows that artificial perceptions of the difference between two characters and between two irides are fuzzy, whereas the corresponding human perceptions are, in fact, crisp.Comment: 5th Int. Conf. on Soft Computing and Applications (Szeged, HU), 22-24 Aug 201

    A Multi-algorithmic Colour Iris Recognition System

    No full text
    The reported accuracies of iris recognition systems are generally higher on near infrared images than on colour RGB images. To increase a colour iris recognition system’s performance, a possible solution is a multialgorithmic approach with an appropriate fusion mechanism. In the present work, this approach is investigated by fusing three algorithms at the score level to enhance the performance of a colour iris recognition system. The contribution of this paper consists of proposing 2 novel feature extraction methods for colour iris images, one based on a 3-bit encoder of the 8 neighborhood and the other one based on gray level co-occurrence matrix. The third algorithm employed uses the classical Gabor filters and phase encoding for feature extraction. A weighted average is used as a matching score fusion. The efficiency of the proposed iris recognition system is demonstrated on UBIRISv1 dataset
    corecore