22 research outputs found

    Shade Promotes Phototropism through Phytochrome B-Controlled Auxin Production.

    Get PDF
    Phototropism is an asymmetric growth response enabling plants to optimally position their organs. In flowering plants, the phototropin (phot) blue light receptors are essential to detect light gradients. In etiolated seedlings, the phototropic response is enhanced by the red/far-red (R/FR)-sensing phytochromes (phy) with a predominant function of phyA. In this study, we analyzed the influence of the phytochromes on phototropism in green (de-etiolated) Arabidopsis seedlings. Our experiments in the laboratory and outdoors revealed that, in open environments (high R/FR ratio), phyB inhibits phototropism. In contrast, under foliar shade, where access to direct sunlight becomes important, the phototropic response was strong. phyB modulates phototropism, depending on the R/FR ratio, by controlling the activity of three basic-helix-loop-helix (bHLH) transcription factors of the PHYTOCHROME INTERACTING FACTORs (PIFs) family. Promotion of phototropism depends on PIF-mediated induction of several members of the YUCCA gene family, leading to auxin production in the cotyledons. Our study identifies PIFs and YUCCAs as novel molecular players promoting phototropism in photoautotrophic, but not etiolated, seedlings. Moreover, our findings reveal fundamental differences in the phytochrome-phototropism crosstalk in etiolated versus green seedlings. We propose that in natural conditions where the light environment is not homogeneous, the uncovered phytochrome-phototropin co-action is important for plants to adapt their growth strategy to optimize photosynthetic light capture

    PIF transcription factors link a neighbor threat cue to accelerated reproduction in Arabidopsis.

    Get PDF
    Changes in light quality indicative of competition for this essential resource influence plant growth and developmental transitions; however, little is known about neighbor proximity-induced acceleration of reproduction. Phytochrome B (phyB) senses light cues from plant competitors, ultimately leading to the expression of the floral inducers FLOWERING LOCUS T (FT) and TWIN SISTER of FT (TSF). Here we show that PHYTOCHROME INTERACTING FACTORs 4, 5 and 7 (PIF4, PIF5 and PIF7) mediate neighbor proximity-induced flowering, with PIF7 playing a prominent role. These transcriptional regulators act directly downstream of phyB to promote expression of FT and TSF. Neighbor proximity enhances PIF accumulation towards the end of the day, coinciding with enhanced floral inducer expression. We present evidence supporting direct PIF-regulated TSF expression. The relevance of our findings is illustrated by the prior identification of FT, TSF and PIF4 as loci underlying flowering time regulation in natural conditions

    Ecological health and water quality of village ponds in the subtropics limiting their use for water supply and groundwater recharge

    Get PDF
    Ponds are a typical feature of many villages in the subtropics, and have been widely used as important sources of water for agriculture, aquaculture and groundwater recharge, as well as enhancing village resilience to floods and drought. Currently many village ponds are in a very poor state and in dire need of rejuvenation. This paper assesses the current water quality status and ecological health of twelve sub-tropical village ponds, situated in western Uttar Pradesh, India. This assessment is used to evaluate their wastewater treatment needs in relation to potential village uses of the water. Physico-chemical (Secchi depth, Total phosphorus and Total nitrogen) and biological (Phytoplankton chlorophyll-a) indicators highlight hypertrophic conditions in all the ponds. The study indicates that the status of village ponds requires significant investments in wastewater treatment to restore their use for many purposes, including aquaculture, although some may still be acceptable for irrigation purposes, as long as pathogenic bacteria are not abundant. We propose increased implementation of decentralised systems for wastewater treatment, such as septic tanks and constructed wetlands, to reduce the organic and nutrient loads entering village ponds and allow their use for a wider range of purposes

    Round robin investigation of methods for the recovery of poliovirus from drinking water.

    Get PDF
    Six laboratories actively involved in water virology research participated in a methods evaluation study, conducted under the auspices of the American Society for Testing and Materials Committee on Viruses in the Aquatic Environment, Task Force on Drinking Water. Each participant was asked to examine the Viradel (virus adsorption-elution) method with cartridge-type Filterite filters for virus adsorption and organic flocculation and aluminum hydroxide-hydroextraction for reconcentration. Virus was adsorbed to filter media at pH 3.5 and eluted with either glycine buffer (pH 10.5) or beef extract-glycine (pHG 9.0). Considerable variation was noted in the quantity of virus recovered from four 100-liter samples of dechlorinated tapwater seeded with low (350 to 860 PFU) and high (1,837 to 4,689 PFU) doses of poliovirus type 1. To have a more uniform standard of comparison, all the test samples were reassayed in one laboratory, where titers were also determined for the virus seed. Test results of the Viradel-organic flocculation method indicated that the average percentage of virus recovery for low-input experiments was 66%, with a range of 8 to 20% in two laboratories, 49 to 63% in three laboratories, and 198% in one laboratory. For the high-input experiments, two laboratories reported recoveries of 6 to 12%, and four laboratories reported recoveries of 26 to 46%. For the Viradel aluminum hydroxide-hydroextraction procedure, two laboratories recovered 9 to 11%, whereas four obtained 17 to 34% for low-input experiments. For the high-input tests, two laboratories reported a recovery of 3 to 5%, and four recovered 11 to 18% of the seeded virus.(ABSTRACT TRUNCATED AT 250 WORDS

    Pion condensation of quark matter in the static Einstein universe

    Full text link
    In the framework of an extended Nambu--Jona-Lasinio model we are studying pion condensation in quark matter with an asymmetric isospin composition in a gravitational field of the static Einstein universe at finite temperature and chemical potential. This particular choice of the gravitational field configuration enables us to investigate phase transitions of the system with exact consideration of the role of this field in the formation of quark and pion condensates and to point out its influence on the phase portraits. We demonstrate the effect of oscillations of the thermodynamic quantities as functions of the curvature and also refer to a certain similarity between the behavior of these quantities as functions of curvature and finite temperature. Finally, the role of quantum fluctuations for spontaneous symmetry breaking in the case of a finite volume of the universe is shortly discussed.Comment: RevTex4; 15 pages, 10 figure

    Not Available

    No full text
    Not AvailableNot AvailableNot Availabl

    Designing a watershed scorecard as a performance evaluation tool for Ur River watershed, Tikamgarh District, Madhya Pradesh

    No full text
    The study is an attempt to design a watershed scorecard by identifying and evaluating selected set of indicators, such as surface water quality, ground water quality, soil condition, agriculture condition, and forest condition, which accurately reflect the health of the watershed. Ur River Watershed in Tikamgarh District, Madhya Pradesh was taken as a case study to assess the watershed health. Evaluation was done by calculating different indices for the selected set of indicators and comparing them with the National standards and guidelines. Based on the performance of each indicator, the grades were assigned to the indicators which helped in designing the watershed scorecard. The results revealed that within the watershed, the forest and soil conditions need a considerable plan for improvement in order to maintain the ecosystem whereas the surface water quality, groundwater quality and the agricultural conditions requires protection as well as enhancement in certain areas. Keywords: Watershed scorecard, Ur River, Bundelkhand, Water quality, Agricultural conditio

    Characteristics of meteorological variables and their implications on evaporation in Roorkee (India)

    No full text
    Estimation of evaporation from meteorological variables and analysis of its properties are very important in the planning of cropping pattern and in the studies of climate change. This study presents the estimation of evaporation, its trends and variation with meteorological variables for the observatory located in Roorkee (India) using the data from 1987 to 2018. The observed pan evaporation was compared with the estimated pan evaporation. The anomalies, trend and shifts in the meteorological variables were correlated with observed pan evaporation. The conclusions from this analysis are (1) decreasing trend for maximum temperature and wind speed was observed for the period from 1987 to 2018, (2) pan evaporation observed during the post-monsoon season indicated a decreasing trend (3) fast urbanization of Roorkee after the creation of Uttarakhand state in the year 2000 enhanced the anthropogenic activities which was evidenced by the shifts in the data of relative humidity and temperature

    PHYTOCHROME INTERACTING FACTOR 7 is important for early responses to elevated temperature in Arabidopsis seedlings.

    No full text
    In response to elevated ambient temperature Arabidopsis thaliana seedlings display a thermomorphogenic response that includes elongation of hypocotyls and petioles. Phytochrome B and cryptochrome 1 are two photoreceptors also playing a role in thermomorphogenesis. Downstream of both environmental sensors PHYTOCHROME INTERACTING FACTOR 4 (PIF4) is essential to trigger this response at least in part through the production of the growth promoting hormone auxin. Using a genetic approach, we identified PHYTOCHROME INTERACTING FACTOR 7 (PIF7) as a novel player for thermomorphogenesis and compared the phenotypes of pif7 and pif4 mutants. We investigated the role of PIF7 during temperature-regulated gene expression and the regulation of PIF7 transcript and protein by temperature. Furthermore, pif7 and pif4 loss-of-function mutants were similarly unresponsive to increased temperature. This included hypocotyl elongation and induction of genes encoding auxin biosynthetic or signalling proteins. PIF7 bound to the promoters of auxin biosynthesis and signalling genes. In response to temperature elevation PIF7 transcripts decreased while PIF7 protein levels increased rapidly. Our results reveal the importance of PIF7 for thermomorphogenesis and indicate that PIF7 and PIF4 likely depend on each other possibly by forming heterodimers. Elevated temperature rapidly enhances PIF7 protein accumulation, which may contribute to the thermomorphogenic response
    corecore