16 research outputs found

    Anaerobic digestion of screenings for biogas recovery

    Get PDF
    Screenings comprise untreatable solid materials that have found their way into the sewer. They are removed during preliminary treatment at the inlet work of any wastewater treatment process using a unit operation termed as a screen and at present are disposed of to landfill. These materials, if not removed, will damage mechanical equipment due to its heterogeneity and reduce overall treatment process, reliability and effectiveness. That is why this material is retained and prevented from entering the treatment system before finally being disposed of. The amount of biodegradable organic matter in screenings often exceeds the upper limit and emits a significant amount of greenhouse gases during biodegradation on landfill. Nutrient release can cause a serious problem of eutrophication phenomena in receiving waters and a deterioration of water quality. Disposal of screenings on landfill also can cause odour problem due to putrescible nature of some of the solid material. In view of the high organic content of screenings, anaerobic digestion method may not only offer the potential for energy recovery but also nutrient. In this study, the anaerobic digestion was performed for 30,days, at controlled pH and temperature, using different dry solids concentrations of screenings to study the potential of biogas recovery in the form of methane. It was found screenings have physical characteristics of 30% total solids and 93% volatile solids, suggesting screenings are a type of waste with high dry solids and organic contents. Consistent pH around pH 6.22 indicates anaerobic digestion of screenings needs minimum pH correction. The biomethane potential tests demonstrated screenings were amenable to anaerobic digestion with methane yield of 355,m3/kg VS, which is comparable to the previous results. This study shows that anaerobic digestion is not only beneficial for waste treatment but also to turn waste into useful resources

    Genotoxic effect induced by hydrogen peroxide in human hepatoma cells using comet assay

    Get PDF
    Background: Hydrogen peroxide is a common reactive oxygen intermediate generated by variousforms of oxidative stress. Aims: The aim of this study was to investigate the DNA damage capacity ofH2O2 in HepG2 cells. Methods: Cells were treated with H2O2 at concentrations of 25 μM or 50 μM for5 min, 30 min, 40 min, 1 h or 24 h in parallel. The extent of DNA damage was assessed by the cometassay. Results: Compared to the control, DNA damage by 25 μM and 50 μM H2O2 increasedsignificantly with increasing incubation time up to 1 h, but it was not increased at 24 h. Conclusions:Our Findings confirm that H2O2 is a typical DNA damage inducing agent and thus is a good modelsystem to study the effects of oxidative stress. DNA damage in HepG2 cells increased significantlywith H2O2 concentration and time of incubation but later decreased likely due to DNA repairmechanisms and antioxidant enzyme

    Modeling of thermophilic anaerobic digestion of sorted household solid waste

    No full text
    Two mathematical models (structured and simplified) were developed and calibrated with experimental data for anaerobic biodegradation of source-sorted household solid wastePostprint (published version

    Methanosarcina as the dominant aceticlastic methanogens during mesophilic anaerobic digestion of putrescible waste

    No full text
    International audienceTaking into account isotope 13C value a mathematical model was developed to describe the dynamics of methanogenic population during mesophilic anaerobic digestion of putrescible solid waste and waste imitating Chinese municipal solid waste. Three groups of methanogens were considered in the model including unified hydrogenotrophic methanogens and two aceticlastic methanogens Methanosaeta sp. and Methanosarcina sp. It was assumed that Methanosaeta sp. and Methanosarcina sp. are inhibited by high volatile fatty acids concentration. The total organic and inorganic carbon concentrations, methane production, methane and carbon dioxide partial pressures as well as the isotope 13C incorporation in PSW and CMSW were used for the model calibration and validation. The model showed that in spite of the high initial biomass concentration of Methanosaeta sp. Methanosarcina sp. became the dominant aceticlastic methanogens in the system. This prediction was confirmed by FISH. It is concluded that Methanosarcina sp. forming multicellular aggregates may resist to inhibition by volatile fatty acids (VFAs) because a slow diffusion rate of the acids limits the VFA concentrations inside the Methanosarcina sp. aggregates

    Anaerobic biodegradation of cellulosic material: Batch experiments and modelling based on isotopic data and focusing on aceticlastic and non-aceticlastic methanogenesis

    No full text
    International audienceUtilizing stable carbon isotope data to account for aceticlastic and non-aceticlastic pathways of methane generation, a model was created to describe laboratory batch anaerobic decomposition of cellulosic materials (office paper and cardboard). The total organic and inorganic carbon concentrations, methane production volume, and methane and CO2 partial pressure values were used for the model calibration and validation. According to the fluorescent in situ hybridization observations, three groups of methanogens including strictly hydrogenotrophic methanogens, strictly aceticlastic methanogens (Methanosaeta sp.) and Methanosarcina sp., consuming both acetate and H2/H2CO3 as well as acetate-oxidizing syntrophs, were considered. It was shown that temporary inhibition of aceticlastic methanogens by non-ionized volatile fatty acids or acidic pH was responsible for two-step methane production from office paper at 35 C where during the first and second steps methane was generated mostly from H2/H2CO3 and acetate, respectively. Water saturated and unsaturated cases were tested. According to the model, at the intermediate moisture (150%), much lower methane production occurred because of full-time inhibition of aceticlastic methanogens. At the lowest moisture, methane production was very low because most likely hydrolysis was seriously inhibited. Simulations showed that during cardboard and office paper biodegradation at 55 C, non-aceticlastic syntrophic oxidation by acetate-oxidizing syntrophs and hydrogenotrophic methanogens were the dominant methanogenic pathways

    Modelling methanogenic pathways and community dynamics during anaerobic digestion of municipal solid waste

    No full text
    International audienceBased on experimental data of mesophilic and thermophilic anaerobic digestion of solids imitating the Chinese and French Municipal Solid Wastes (CMSW and FMSW) a mathematical model was developed to describe dynamics of methanogenic population. Three groups of methanogens were considered in the model including strictly hydrogenotrophic methanogens (Methanoculleus sp.), strictly aceticlastic methanogens (Methanosaeta sp.) and Methanosarcina sp. consuming both acetate and H2 /H2CO3. The growth of these different methanogens was monitored using Fluorescent in situ hybridization. Acetate-oxidizing syntrophs were also included in the model. The batch bottles were studied at water-saturated and unsaturated conditions. Initially, headspaces were purged by inert gas (helium). CMSW and FMSW contained mostly putrescible waste (PSW) as well as cellulosic material under the form of office paper (OP) and cardboard (CD). Separately, batch biodegradation experiments with OP, CD and PSW were carried out. The total organic (TOC) and inorganic (TIC) carbon concentrations, methane production volume, methane and carbon dioxide partial pressures values were used for the model calibration and validation. Moreover, in order to differentiate methane produced by hydrogenotrophic and aceticlastic pathways, we included the equations representing the evolution of isotopic 13C composition of methane that was followed by GC-IRMS analysis. Inhibition of the stages of hydrolysis/acidogenesis and aceticlastic methanogenesis by high value of non-ionized or total VFA concentrations was taken into account. A comparatively good fit of the model to experimental data was obtained. (...

    Similar evolution in delta (CH4)-C-13 and model-predicted relative rate of aceticlastic methanogenesis during mesophilic methanization of municipal solid wastes

    No full text
    International audienceSimilar evolution was obtained for the stable carbon isotope signatures d 13CH4 and the model-predicted relative rate of aceticlastic methanogenesis during mesophilic methanization of municipal solid wastes. In batch incubations, the importance of aceticlastic and hydrogenotrophic methanogenesis changes in time. Initially, hydrogenotrophic methanogenesis dominated, but increasing population of Methanosarcina sp. enhances aceticlastic methanogenesis. Later, hydrogenotrophic methanogenesis intensified again. A mathematical model was developed to evaluate the relative contribution of hydrogenotrophic and aceticlastic pathways of methane generation during mesophilic batch anaerobic biodegradation of the French and the Chinese Municipal Solid Wastes (FMSW and CMSW). Taking into account molecular biology analysis reported earlier three groups of methanogens including strictly hydrogenotrophic methanogens, strictly aceticlastic methanogens (Methanosaeta sp.) and Methanosarcina sp., consuming both acetate and H2/H2CO3 were considered in the model. The total organic and inorganic carbon concentrations, methane production volume, methane and carbon dioxide partial pressures values were used for the model calibration and validation. Methane isotopic composition (d 13CH4) evolution during the incubations was used to independently validate the model results. The model demonstrated that only the putrescible solid waste was totally converted to methane

    Combined monitoring of changes in delta(CH4)-C-13 and archaeal community structure during mesophilic methanization of municipal solid waste

    No full text
    International audienceReconstituted municipal solid waste (MSW) with varying contents of putrescible and cellulosic waste was incubated anaerobically under mesophilic conditions. Standard physicochemical parameters were monitored, together with stable isotopic signatures of produced CH4 and CO2. δ13C values for CH4 indicated a change of methanogenic metabolism with time. CH4 was predominantly produced from H2/CO2 at the beginning of the incubations. This period was associated with important shifts in archaeal communities monitored by automated ribosomal intergenic spacer analysis (ARISA) and FISH of oligonucleotidic probes targeting specifically 16S rRNA gene of various methanogenic groups. The onset of the active methane generation phase was characterized by an increase of CH4δ13C, indicating a progressive shift toward an aceticlastic metabolism. When the methane production levelled off, a decrease in the isotopic signature was observed toward values characteristics of hydrogenotrophic metabolism. ARISA profiles were, however, found to be stable from the beginning of the active methane generation phase until the end of the experiment. FISH observation indicated that members of the family Methanosarcinaceae were predominant in the archaeal community during this period, suggesting that these methanogens might exhibit a high metabolic versatility during methanization of waste

    Anaerobic digestion model No. 1 (ADM1)

    No full text
    The IWA Anaerobic Digestion Modelling Task Group was established in 1997 at the 8th World Congress on,Anaerobic Digestion (Sendai, Japan) with the goal of developing a generalised anaerobic digestion model. The structured model includes multiple steps describing biochemical as well as physicochemical processes. The biochemical steps include disintegration from homogeneous particulates to carbohydrates, proteins and lipids; extracellular hydrolysis of these particulate substrates to sugars, amino acids, and long chain fatty acids (LCFA), respectively; acidogenesis from sugars and amino acids to volatile fatty acids (VFAs) and hydrogen; acetogenesis of LCFA and VFAs to acetate; and separate methanogenesis steps from acetate and hydrogen/CO2. The physico-chemical equations describe ion association and dissociation, and gas-liquid transfer. Implemented as a differential and algebraic equation (DAE) set, there are 26 dynamic state concentration variables, and 8 implicit algebraic variables per reactor vessel or element. Implemented as differential equations (DE) only, there are 32 dynamic concentration state variables
    corecore