348 research outputs found

    Cosmological constraints on parameters of one-brane models with extra dimension

    Full text link
    We study some aspects of cosmologies in 5D models with one infinite extra dimension. Matter is confined to the brane, gravity extends to the bulk. Models with positive and negative tension of the brane are considered. Cosmological evolution of the 4D world is described by warped solutions of the generalized Friedmann equation. Cosmological solutions on the brane are obtained with the input of the present-time observational cosmological parameters. We estimate the age of the Universe and abundance of 4He{}^4 He produced in primordial nucleosynthesis in different models. Using these estimates we find constraints on dimensionless combinations of the 5D gravitational scale, scale of the warp factor and coupling at the 4D curvature term in the action.Comment: 21 pages, 4 figure

    Exact Cross Sections for the Neutralino-Slepton Coannihilation

    Get PDF
    Coannihilation processes provide an important additional mechanism for reducing the density of stable relics in the Universe. In the case of the stable lightest neutralino of the MSSM, and in particular the Constrained MSSM (CMSSM), the coannihilation with sleptons plays a major role in opening up otherwise cosmologically excluded ranges of supersymmetric parameters. In this paper, we derive a full set of exact, analytic expressions for the coannihilation of the lightest neutralino with the sleptons into all two--body tree--level final states in the framework of minimal supersymmetry. We make no simplifying assumptions about the neutralino nor about sfermion masses and mixings other than the absence of explicit CP--violating terms and inter--family mixings. The expressions should be particularly useful in computing the neutralino WIMP relic abundance without the approximation of partial wave expansion. We illustrate the effect of our analytic results with numerical examples and demonstrate a sizeable difference with approximate expressions available in the literature.Comment: LaTeX, 46 pages, 8 eps figure

    Graviton emission from the brane in the bulk in a model with extra dimension

    Full text link
    In a model of 3-brane embedded in 5D space-time we calculate the graviton emission from the brane to the bulk. Matter is confined to the brane, gravitons produced in reactions of matter on the brane escape to the bulk. The Einstein equations which are modified by the terms due to graviton production are solved perturbatively, the leading order being that without the graviton production. In the period of late cosmology, in which in the generalized Friedmann equation the term linear in the energy density of matter in dominant, we calculate the spectrum of gravitons (of the tower of Kaluza-Klein states) and the collision integral in the Boltzmann equation. We find the energy-momentum tensor of the emitted gravitons in the bulk, and using it show that corrections due to graviton production to the leading-order terms in the Einstein equations are small, and the perturbative approach is justified. We calculate the difference of abundances of 4He{}^4 He produced in primordial nucleosynthesis in the models with and without the graviton production, and find that the difference is a very small number, much smaller than that estimated previously.Comment: 26 pages, LaTeX Published version with small modification

    Superheavy dark matter and ultrahigh energy cosmic rays

    Full text link
    The phase of inflationary expansion in the early universe produces superheavy relics in a mass window between 10^{12} GeV and 10^{14} GeV. Decay or annihilation of these superheavy relics can explain the observed ultrahigh energy cosmic rays beyond the Greisen-Zatsepin-Kuzmin cutoff. We emphasize that the pattern of cosmic ray arrival directions with energies beyond 20 EeV will decide between the different proposals for the origin of ultrahigh energy cosmic rays.Comment: Based on an invited talk given by RD at Theory Canada 1, Vancouver, June 2-5, 200

    Stabilization of internal spaces in multidimensional cosmology

    Get PDF
    Effective 4-dimensional theories are investigated which were obtained under dimensional reduction of multidimensional cosmological models with a minimal coupled scalar field as matter source. Conditions for the internal space stabilization are considered and the possibility for inflation in the external space is discussed. The electroweak as well as the Planck fundamental scale approaches are investigated and compared with each other. It is shown that there exists a rescaling for the effective cosmological constant as well as for gravitational exciton masses in the different approaches.Comment: 12 pages, LaTeX2e, to appear in Phys.Rev.D, note adde

    Effective CP violation in the Standard Model

    Full text link
    We study the strength of effective CP violation originating from the CKM matrix in the effective action obtained by integrating out the fermions in the Standard Model. Using results obtained by Salcedo for the effective action in a general chiral gauge model, we find that there are no CKM CP-violating terms to fourth order in a gauge-covariant derivative expansion that is non-perturbative in the Higgs field. The details of the calculation suggest that, at zero temperature, the strength of CP violation is approximately independent of the overall scale of the Yukawa couplings. Thus, order of magnitude estimates based on Jarlskog's invariant could be too small by a factor of about 10^{17}.Comment: 19 pages, no figure

    Baryogenesis via lepton number violating scalar interactions

    Get PDF
    We study baryogenesis through lepton number violation in left-right symmetric models. In these models the lepton number and CP violating interactions of the triplet higgs scalars can give rise to lepton number asymmetry through non-equilibrium decays of the SU(2)LSU(2)_L triplet higgs and the right handed neutrinos. This in turn generates baryon asymmetry during the electroweak anomalous processes.Comment: 14 pages, UTPT-93-1

    Standard Model baryogenesis through four-fermion operators in braneworlds

    Get PDF
    We study a new baryogenesis scenario in a class of braneworld models with low fundamental scale, which typically have difficulty with baryogenesis. The scenario is characterized by its minimal nature: the field content is that of the Standard Model and all interactions consistent with the gauge symmetry are admitted. Baryon number is violated via a dimension-6 proton decay operator, suppressed today by the mechanism of quark-lepton separation in extra dimensions; we assume that this operator was unsuppressed in the early Universe due to a time-dependent quark-lepton separation. The source of CP violation is the CKM matrix, in combination with the dimension-6 operators. We find that almost independently of cosmology, sufficient baryogenesis is nearly impossible in such a scenario if the fundamental scale is above 100 TeV, as required by an unsuppressed neutron-antineutron oscillation operator. The only exception producing sufficient baryon asymmetry is a scenario involving out-of-equilibrium c quarks interacting with equilibrium b quarks.Comment: 39 pages, 5 figures v2: typos, presentational changes, references and acknowledgments adde

    Antimatter in the Universe

    Full text link
    Cosmological models which predict a large amount of antimatter in the Universe are reviewed. Observational signatures and searches for cosmic antimatter are briefly considered. A short discussion of new long range forces which might be associated with matter and antimatter is presented.Comment: 17 pages + 2 figure

    CBR Anisotropy from Primordial Gravitational Waves in Two-Component Inflationary Cosmology

    Full text link
    We examine stochastic temperature fluctuations of the cosmic background radiation (CBR) arising via the Sachs-Wolfe effect from gravitational wave perturbations produced in the early universe. We consider spatially flat, perturbed FRW models that begin with an inflationary phase, followed by a mixed phase containing both radiation and dust. The scale factor during the mixed phase takes the form a(η)=c1η2+c2η+c3a(\eta)=c_1\eta^2+c_2\eta+c_3, where cic_i are constants. During the mixed phase the universe smoothly transforms from being radiation to dust dominated. We find analytic expressions for the graviton mode function during the mixed phase in terms of spheroidal wave functions. This mode function is used to find an analytic expression for the multipole moments ⟨al2⟩\langle a_l^2\rangle of the two-point angular correlation function C(γ)C(\gamma) for the CBR anisotropy. The analytic expression for the multipole moments is written in terms of two integrals, which are evaluated numerically. The results are compared to multipoles calculated for models that are {\it completely} dust dominated at last-scattering. We find that the multipoles ⟨al2⟩\langle a_l^2\rangle of the CBR temperature perturbations for l>10l>10 are significantly larger for a universe that contains both radiation and dust at last-scattering. We compare our results with recent, similar numerical work and find good agreement. The spheroidal wave functions may have applications to other problems of cosmological interest.Comment: 28 pgs + 6 postscript figures, RevTe
    • …
    corecore