30 research outputs found
ΠΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ΅Π±ΠΎΡΠ΅ΠΉΠ½ΠΎΠ³ΠΎ ΠΊΠ΅ΡΠ°ΡΠΎΠ·Π° Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ Π½Π°ΡΡΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΠ³Π»Π΅Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΎΠ±ΠΌΠ΅Π½Π°
Multiple seborrheic keratosis (SK), especially when there is overexpression of the epidermal growth factor receptor (EGFR), is considered paraneoplastic dermatosis, but it is almost always associated with multiple fibroepithelial polyps (PF) and pseudoacanthosis, skin diseases in which the leading role is played by insulin resistance and type 2 diabetes mellitus. The study examines the possibility of the effect of disorders of carbohydrate metabolism on the clinical picture of multiple SK and the expression of EGFR.Aims. To study the clinical features of multiple SC and the expression of EGFR in patients, depending on the presence of concomitant type 2 diabetes mellitus.Materials and methods. There were 65 patients with multiple SK at the age from 55 to 77 years, including women (44) and men (21). All the patients were examined skin, consultation of the endocrinologist. For a histological and immunohis-tochemical study (IHC), a single SK was surgically excised in each patient. IHC-reactions were carried out with monoclonal antibodies to EGFR. The result was assessed by the number of stained cytoplasmic membranes of tumor cells.Results. In 81.5 % of cases, multiple SK was associated in patients with type 2 diabetes mellitus. The location of the SK was also characteristic mainly in large folds of the skin, in contrast to patients without disorders of carbohydrate metabolism, in which the SK were located mainly on the lateral surfaces of the trunk and abdomen, without affecting the large folds of the skin. Multiple PF were also characteristic of individuals with type 2 diabetes mellitus. In IHC studies EGFR expression was detected in 100 % of cases in individuals with multiple SC and type 2 diabetes mellitus in over 30 % of tumor cells, and only in 16.7 % of cases in individuals with multiple SK without violations of carbohydrate metabolism.Conclusions. The presence of multiple SK in patients, in combination with multiple PFs with characteristic tumor localization in large folds of the skin, serves as a diagnostic marker of carbohydrate metabolism disorders or predispositions to the development of type 2 diabetes. Increased expression of EGFR plays a leading role in the pathogenesis of multiple SK, stimulating the proliferation and growth of SK, in turn, as a consequence of impairment of insulin signaling pathways and insulin resistance.ΠΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅Π½Π½ΡΠΉ ΡΠ΅Π±ΠΎΡΠ΅ΠΉΠ½ΡΠΉ ΠΊΠ΅ΡΠ°ΡΠΎΠ· (Π‘Π), ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎ ΠΏΡΠΈ Π½Π°Π»ΠΈΡΠΈΠΈ Π³ΠΈΠΏΠ΅ΡΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ ΡΠ΅ΡΠ΅ΠΏΡΠΎΡΠΎΠ² ΡΠΏΠΈΠ΄Π΅ΡΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ°ΠΊΡΠΎΡΠ° ΡΠΎΡΡΠ° (EGFR), ΡΡΠΈΡΠ°ΡΡ ΠΏΠ°ΡΠ°Π½Π΅ΠΎΠΏΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌ Π΄Π΅ΡΠΌΠ°ΡΠΎΠ·ΠΎΠΌ, ΠΎΠ΄Π½Π°ΠΊΠΎ ΠΎΠ½ ΠΏΠΎΡΡΠΈ Π²ΡΠ΅Π³Π΄Π° Π°ΡΡΠΎΡΠΈΠΈΡΠΎΠ²Π°Π½ Ρ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅Π½Π½ΡΠΌΠΈ ΡΠΈΠ±ΡΠΎΡΠΏΠΈΡΠ΅Π»ΠΈΠ°Π»ΡΠ½ΡΠΌΠΈ ΠΏΠΎΠ»ΠΈΠΏΠ°ΠΌΠΈ (Π€Π) ΠΈ ΠΏΡΠ΅Π²Π΄ΠΎΠ°ΠΊΠ°Π½ΡΠΎΠ·ΠΎΠΌ β Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡΠΌΠΈ ΠΊΠΎΠΆΠΈ, Π² ΠΏΠ°ΡΠΎΠ³Π΅Π½Π΅Π·Π΅ ΠΊΠΎΡΠΎΡΡΡ
Π²Π΅Π΄ΡΡΡΡ ΡΠΎΠ»Ρ ΠΈΠ³ΡΠ°Π΅Ρ ΠΈΠ½ΡΡΠ»ΠΈΠ½ΠΎΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΠΎΡΡΡ ΠΈ ΡΠ°Ρ
Π°ΡΠ½ΡΠΉ Π΄ΠΈΠ°Π±Π΅Ρ 2 ΡΠΈΠΏΠ° (Π‘Π 2 ΡΠΈΠΏΠ°). Π ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΈ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΡΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ Π²Π»ΠΈΡΠ½ΠΈΡ Π½Π°ΡΡΡΠ΅Π½ΠΈΠΉ ΡΠ³Π»Π΅Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΎΠ±ΠΌΠ΅Π½Π° Π½Π° ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΡΡ ΠΊΠ°ΡΡΠΈΠ½Ρ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ Π‘Π ΠΈ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΡ EGFR.Π¦Π΅Π»Ρ. ΠΠ·ΡΡΠΈΡΡ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ Π‘Π ΠΈ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΡ EGFR Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ Π½Π°Π»ΠΈΡΠΈΡ ΡΠΎΠΏΡΡΡΡΠ²ΡΡΡΠ΅Π³ΠΎ Π‘Π 2 ΡΠΈΠΏΠ°.ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. ΠΠΎΠ΄ Π½Π°Π±Π»ΡΠ΄Π΅Π½ΠΈΠ΅ΠΌ Π½Π°Ρ
ΠΎΠ΄ΠΈΠ»ΠΈΡΡ 65 ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅Π½Π½ΡΠΌ Π‘Π Π² Π²ΠΎΠ·ΡΠ°ΡΡΠ΅ ΠΎΡ 55 Π΄ΠΎ 77 Π»Π΅Ρ, ΠΈΠ· Π½ΠΈΡ
ΠΆΠ΅Π½ΡΠΈΠ½ 44, ΠΌΡΠΆΡΠΈΠ½ 21. ΠΡΠ΅ΠΌ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ°ΠΌ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΡΡ ΠΎΡΠΌΠΎΡΡ ΠΊΠΎΠΆΠ½ΡΡ
ΠΏΠΎΠΊΡΠΎΠ²ΠΎΠ², ΠΊΠΎΠ½ΡΡΠ»ΡΡΠ°ΡΠΈΡ ΡΠ½Π΄ΠΎΠΊΡΠΈΠ½ΠΎΠ»ΠΎΠ³Π°. ΠΠ»Ρ Π³ΠΈΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈ ΠΈΠΌΠΌΡΠ½ΠΎΠ³ΠΈΡΡΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ (ΠΠΠ₯) Ρ
ΠΈΡΡΡΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΏΡΡΠ΅ΠΌ ΠΈΡΡΠ΅ΠΊΠ°Π»ΡΡ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΡΠΉ ΡΠ»Π΅ΠΌΠ΅Π½Ρ Π‘Π Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ°. ΠΠΠ₯-ΡΠ΅Π°ΠΊΡΠΈΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Ρ ΠΌΠΎΠ½ΠΎΠΊΠ»ΠΎΠ½Π°Π»ΡΠ½ΡΠΌΠΈ Π°Π½ΡΠΈΡΠ΅Π»Π°ΠΌΠΈ ΠΊ EGFR. Π Π΅Π·ΡΠ»ΡΡΠ°Ρ ΠΎΡΠ΅Π½ΠΈΠ²Π°Π»ΠΈ ΠΏΠΎ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Ρ ΠΎΠΊΡΠ°ΡΠ΅Π½Π½ΡΡ
ΡΠΈΡΠΎΠΏΠ»Π°Π·ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΌΠ΅ΠΌΠ±ΡΠ°Π½ ΠΊΠ»Π΅ΡΠΎΠΊ ΠΎΠΏΡΡ
ΠΎΠ»ΠΈ.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. Π 81,5 % ΡΠ»ΡΡΠ°Π΅Π² ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅Π½Π½ΡΠΉ Π‘Π Π±ΡΠ» Π°ΡΡΠΎΡΠΈΠΈΡΠΎΠ²Π°Π½ Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ Π‘Π 2 ΡΠΈΠΏΠ°. Π₯Π°ΡΠ°ΠΊΡΠ΅ΡΠ½ΡΠΌ Π±ΡΠ»ΠΎ ΠΈ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π‘Π β Π² ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΌ Π² ΠΊΡΡΠΏΠ½ΡΡ
ΡΠΊΠ»Π°Π΄ΠΊΠ°Ρ
ΠΊΠΎΠΆΠΈ, Π² ΠΎΡΠ»ΠΈΡΠΈΠ΅ ΠΎΡ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Π±Π΅Π· Π½Π°ΡΡΡΠ΅Π½ΠΈΠΉ ΡΠ³Π»Π΅Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΎΠ±ΠΌΠ΅Π½Π°, Ρ ΠΊΠΎΡΠΎΡΡΡ
Π‘Π ΡΠ°ΡΠΏΠΎΠ»Π°Π³Π°Π»ΠΈΡΡ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ Π½Π° Π±ΠΎΠΊΠΎΠ²ΡΡ
ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΡΡ
ΡΡΠ»ΠΎΠ²ΠΈΡΠ° ΠΈ ΠΆΠΈΠ²ΠΎΡΠ΅, Π±Π΅Π· ΠΏΠΎΡΠ°ΠΆΠ΅Π½ΠΈΡ ΠΊΡΡΠΏΠ½ΡΡ
ΡΠΊΠ»Π°Π΄ΠΎΠΊ ΠΊΠΎΠΆΠΈ. ΠΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅Π½Π½ΡΠ΅ Π€Π Π±ΡΠ»ΠΈ ΡΠ°ΠΊΠΆΠ΅ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ½Ρ Π΄Π»Ρ Π»ΠΈΡ Ρ Π‘Π 2 ΡΠΈΠΏΠ°. ΠΡΠΈ ΠΠΠ₯-ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΈ Ρ ΠΌΠΎΠ½ΠΎΠΊΠ»ΠΎΠ½Π°Π»ΡΠ½ΡΠΌΠΈ Π°Π½ΡΠΈΡΠ΅Π»Π°ΠΌΠΈ ΠΊ EGFR Π²ΡΡΠ°ΠΆΠ΅Π½Π½Π°Ρ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΡ Π² Π±ΠΎΠ»Π΅Π΅ 30 % ΠΊΠ»Π΅ΡΠΎΠΊ ΠΎΠΏΡΡ
ΠΎΠ»ΠΈ Π±ΡΠ»Π° Π²ΡΡΠ²Π»Π΅Π½Π° Π² 100 % ΡΠ»ΡΡΠ°Π΅Π² Ρ Π»ΠΈΡ Ρ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅Π½Π½ΡΠΌΠΈ Π‘Π ΠΈ Π‘Π 2 ΡΠΈΠΏΠ° ΠΈ ΡΠΎΠ»ΡΠΊΠΎ Π² 16,7 % ΡΠ»ΡΡΠ°Π΅Π² Ρ Π»ΠΈΡ Ρ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅Π½Π½ΡΠΌΠΈ Π‘Π Π±Π΅Π· Π½Π°ΡΡΡΠ΅Π½ΠΈΠΉ ΡΠ³Π»Π΅Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΎΠ±ΠΌΠ΅Π½Π°.ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅. ΠΠ°Π»ΠΈΡΠΈΠ΅ Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ Π‘Π, Π² ΡΠΎΡΠ΅ΡΠ°Π½ΠΈΠΈ Ρ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅Π½Π½ΡΠΌΠΈ Π€Π Ρ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ½ΠΎΠΉ Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°ΡΠΈΠ΅ΠΉ ΠΎΠΏΡΡ
ΠΎΠ»Π΅ΠΉ Π² ΠΊΡΡΠΏΠ½ΡΡ
ΡΠΊΠ»Π°Π΄ΠΊΠ°Ρ
ΠΊΠΎΠΆΠΈ, ΡΠ»ΡΠΆΠΈΡ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΌΠ°ΡΠΊΠ΅ΡΠΎΠΌ Π½Π°ΡΡΡΠ΅Π½ΠΈΠΉ ΡΠ³Π»Π΅Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΎΠ±ΠΌΠ΅Π½Π° ΠΈ ΠΏΡΠ΅Π΄ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½ΠΎΡΡΠΈ ΠΊ ΡΠ°Π·Π²ΠΈΡΠΈΡ Π‘Π 2 ΡΠΈΠΏΠ°. ΠΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ EGFR, ΡΠ²Π»ΡΡΡΡ ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ΠΌ Π½Π°ΡΡΡΠ΅Π½ΠΈΡ ΡΠΈΠ³Π½Π°Π»ΡΠ½ΡΡ
ΠΏΡΡΠ΅ΠΉ ΠΈΠ½ΡΡΠ»ΠΈΠ½Π° ΠΈ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΈΠ½ΡΡΠ»ΠΈΠ½ΠΎΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΠΎΡΡΠΈ, ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΡΡΠΈΠΌΡΠ»ΡΡΠΈΠΈ ΠΏΡΠΎΠ»ΠΈΡΠ΅ΡΠ°ΡΠΈΠΈ ΠΈ ΡΠΎΡΡΡ Π‘Π, ΠΈΠ³ΡΠ°Ρ Π·Π½Π°ΡΠΈΠΌΡΡ ΡΠΎΠ»Ρ Π² ΠΏΠ°ΡΠΎΠ³Π΅Π½Π΅Π·Π΅ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡ
ΠΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΠΏΠΈΠ³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ ΡΠ΅Π±ΠΎΡΠ΅ΠΉΠ½ΠΎΠ³ΠΎ ΠΊΠ΅ΡΠ°ΡΠΎΠ·Π°
Seborrheic keratosis (SK) is a common benign epithelial skin tumor that exists in a variety of clinical op - tions. The color of the tumor varies from yellow to dark brown, which leads to diagnostic errors. There is Π°little data about pigmentation of the SK in the literature. There is no consensus on the content of melanocytes in the SK.Objective: to study the nature of the distribution of melanin in the SK and its relationship with the number of melanocytes.Materials and methods. An analysis of 130 histological preparations with a verified diagnosis of SK and immunohistochemistry (IHC) test with monoclonal antibodies to Melan A (clone A103 ready-to-use) have been performed. Material sampling was performed in 130 patients with SK at the age of 46β77. In 48.5 % of the material was taken from places that are easily exposed to sunlight, 51.5 % β from places that are often closed, less prone to exposure to UV-radiation.Results. As a result of histological examination, three types of pigmentation of the SK were identified, depending on the accumulation and location of pigment in the tumor. IHC test with monoclonal antibodies to Melan A in all cases of SK revealed a significant decrease in the content of melanocytes (0.7β5 %), compared with the unaffected epidermis (10.7β14.3 %) (Ρ = 0.001). The greatest number of melanocytes (3β5 %) was recorded in SK, which were removed from places exposed to UV radiation.Conclusions. A significant decrease in the content of melanocytes (less than 3 % of tumor cells) in the most pigmented SK (p = 0.0003), the lack of activation of melanogenesis in the tumor under the influence of UV radiation indicates the accumulation of pigment due to its slow utilization, due to aging and a de - crease in metabolismtumor cells.Π‘Π΅Π±ΠΎΡΠ΅ΠΉΠ½ΡΠΉ ΠΊΠ΅ΡΠ°ΡΠΎΠ· (Π‘Π) β ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½Π½Π°Ρ Π΄ΠΎΠ±ΡΠΎΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½Π°Ρ ΡΠΏΠΈΡΠ΅Π»ΠΈΠ°Π»ΡΠ½Π°Ρ ΠΎΠΏΡΡ
ΠΎΠ»Ρ ΠΊΠΎΠΆΠΈ, ΡΡΡΠ΅ΡΡΠ²ΡΡΡΠ°Ρ Π²ΠΎ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ
Π²Π°ΡΠΈΠ°Π½ΡΠΎΠ². Π¦Π²Π΅Ρ ΠΎΠΏΡΡ
ΠΎΠ»ΠΈ Π²Π°ΡΡΠΈΡΡΠ΅Ρ ΠΎΡ ΡΠ²Π΅ΡΠ»ΠΎ-ΠΆΠ΅Π»ΡΠΎΠ³ΠΎ Π΄ΠΎ ΡΠ΅ΠΌΠ½ΠΎ-ΠΊΠΎΡΠΈΡΠ½Π΅Π²ΠΎΠ³ΠΎ, ΡΡΠΎ ΡΠ°ΡΡΠΎ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΎΡΠΈΠ±ΠΊΠ°ΠΌ. Π Π°Π±ΠΎΡΡ, ΠΏΠΎΡΠ²ΡΡΠ΅Π½Π½ΡΠ΅ ΠΏΠΈΠ³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ Π‘Π, Π΅Π΄ΠΈΠ½ΠΈΡΠ½Ρ. ΠΠ΅Ρ Π΅Π΄ΠΈΠ½ΠΎΠ³ΠΎ ΠΌΠ½Π΅Π½ΠΈΡ ΠΎ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠΈ ΠΌΠ΅Π»Π°Π½ΠΎΡΠΈΡΠΎΠ² Π² Π‘Π.Π¦Π΅Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ: ΠΈΠ·ΡΡΠΈΡΡ Ρ
Π°ΡΠ°ΠΊΡΠ΅Ρ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΌΠ΅Π»Π°Π½ΠΈΠ½Π° Π² Π‘Π ΠΈ Π΅Π³ΠΎ Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·Ρ Ρ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎΠΌ ΠΌΠ΅Π»Π°Π½ΠΎΡΠΈΡΠΎΠ².ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. ΠΡΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· 130 Π³ΠΈΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠ² Ρ Π²Π΅ΡΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠΌ Π΄ΠΈΠ°Π³Π½ΠΎΠ·ΠΎΠΌ Π‘Π, ΠΈΠΈΠΌΠΌΡΠ½ΠΎΠ³ΠΈΡΡΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠ΅ (ΠΠΠ₯) ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ ΠΌΠΎΠ½ΠΎΠΊΠ»ΠΎΠ½Π°Π»ΡΠ½ΡΠΌΠΈ Π°Π½ΡΠΈΡΠ΅Π»Π°ΠΌΠΈ ΠΊ Melan A (clone A103 ready-to-use). ΠΠ·ΡΡΠΈΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π° ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Ρ 130 ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ Π‘Π Π² Π²ΠΎΠ·ΡΠ°ΡΡΠ΅ 46β77 Π»Π΅Ρ: Π² 48,5 % Ρ ΠΌΠ΅ΡΡ, ΠΊΠΎΡΠΎΡΡΠ΅ Π»Π΅Π³ΠΊΠΎ ΠΏΠΎΠ΄Π²Π΅ΡΠ³Π°ΡΡΡΡ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡ ΡΠΎΠ»Π½Π΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ²Π΅ΡΠ°, Π² 51,5 % β Ρ ΠΌΠ΅ΡΡ, ΡΠ°ΡΠ΅ Π·Π°ΠΊΡΡΡΡΡ
, ΠΌΠ΅Π½Π΅Π΅ ΡΠΊΠ»ΠΎΠ½Π½ΡΡ
ΠΊ ΠΎΠ±Π»ΡΡΠ΅Π½ΠΈΡ Π£Π€-Π»ΡΡΠ°ΠΌΠΈ.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. Π ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ Π³ΠΈΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π±ΡΠ»ΠΈ Π²ΡΠ΄Π΅Π»Π΅Π½Ρ ΡΡΠΈ ΡΠΈΠΏΠ° ΠΏΠΈΠ³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ Π‘Π Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΡ ΠΈ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΏΠΈΠ³ΠΌΠ΅Π½ΡΠ° Π² ΠΎΠΏΡΡ
ΠΎΠ»ΠΈ. ΠΠΠ₯-ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ ΠΌΠΎΠ½ΠΎΠΊΠ»ΠΎΠ½Π°Π»ΡΠ½ΡΠΌΠΈ Π°Π½ΡΠΈΡΠ΅Π»Π°ΠΌΠΈ ΠΊ Melan A Π²ΡΡΠ²ΠΈΠ»ΠΎ Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½ΠΎΠ΅ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° ΠΌΠ΅Π»Π°Π½ΠΎΡΠΈΡΠΎΠ² Π² Π‘Π (0,7β5 %) ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΠΏΡΠΈΠ»Π΅ΠΆΠ°ΡΠΈΠΌ ΠΊ ΠΎΠΏΡΡ
ΠΎΠ»ΠΈ Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π΅Π½Π½ΡΠΌ ΡΠΏΠΈΠ΄Π΅ΡΠΌΠΈΡΠΎΠΌ (10,7β14,3 %) (Ρ = 0,001). ΠΠ°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π΅ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΌΠ΅Π»Π°Π½ΠΎΡΠΈΡΠΎΠ² (3β5 %) ΡΠ΅Π³ΠΈΡΡΡΠΈΡΠΎΠ²Π°Π»ΠΎΡΡ Π² Π½Π°ΠΈΠΌΠ΅Π½Π΅Π΅ ΠΏΠΈΠ³ΠΌΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
Π‘Π, ΡΠ΄Π°Π»Π΅Π½Π½ΡΡ
Ρ ΠΌΠ΅ΡΡ, ΠΏΠΎΠ΄Π²Π΅ΡΠΆΠ΅Π½Π½ΡΡ
Π£Π€-ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ.ΠΡΠ²ΠΎΠ΄Ρ. ΠΠ½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΠΌΠ΅Π»Π°Π½ΠΎΡΠΈΡΠΎΠ² (ΠΌΠ΅Π½Π΅Π΅ 3 % ΠΊΠ»Π΅ΡΠΎΠΊ ΠΎΠΏΡΡ
ΠΎΠ»ΠΈ) Π² Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΏΠΈΠ³ΠΌΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
Π‘Π (Ρ = 0,0003), ΠΎΡΡΡΡΡΡΠ²ΠΈΠ΅ Π°ΠΊΡΠΈΠ²Π°ΡΠΈΠΈ ΠΌΠ΅Π»Π°Π½ΠΎΠ³Π΅Π½Π΅Π·Π° Π² ΠΎΠΏΡΡ
ΠΎΠ»ΠΈ ΠΏΠΎΠ΄ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ Π£Π€-ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΠ΅Ρ ΠΎ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΠΈ ΠΏΠΈΠ³ΠΌΠ΅Π½ΡΠ° Π² ΡΠ²ΡΠ·ΠΈ Ρ Π΅Π³ΠΎ Π·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠΉ ΡΡΠΈΠ»ΠΈΠ·Π°ΡΠΈΠ΅ΠΉ ΠΈΠ·-Π·Π° ΡΡΠ°ΡΠ΅Π½ΠΈΡ ΠΈ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΡ ΠΌΠ΅ΡΠ°Π±ΠΎΠ»ΠΈΠ·ΠΌΠ° ΠΊΠ»Π΅ΡΠΎΠΊ ΠΎΠΏΡΡ
ΠΎΠ»ΠΈ
Fungal Planet description sheets: 1284β1382
Novel species of fungi described in this study include those from various countries as follows: Antartica, Cladosporium austrolitorale from coastal sea sand. Australia, Austroboletus yourkae on soil, Crepidotus innuopurpureus on dead wood, Curvularia stenotaphri from roots and leaves of Stenotaphrum secundatum and Thecaphora stajsicii from capsules of Oxalis radicosa. Belgium, Paraxerochrysium coryli (incl. Paraxerochrysium gen. nov.) from Corylus avellana. Brazil, Calvatia nordestina on soil, Didymella tabebuiicola from leaf spots on Tabebuia aurea, Fusarium subflagellisporum from hypertrophied floral and vegetative branches of Mangifera indica and Microdochium maculosum from living leaves of Digitaria insularis. Canada, Cuphophyllus bondii fromagrassland. Croatia, Mollisia inferiseptata from a rotten Laurus nobilis trunk. Cyprus, Amanita exilis oncalcareoussoil. Czech Republic, Cytospora hippophaicola from wood of symptomatic Vaccinium corymbosum. Denmark, Lasiosphaeria deviata on pieces of wood and herbaceousdebris. Dominican Republic, Calocybella goethei among grass on a lawn. France (Corsica) , Inocybe corsica onwetground. France (French Guiana) , Trechispora patawaensis on decayed branch of unknown angiosperm tree and Trechispora subregularis on decayed log of unknown angiosperm tree. Germany, Paramicrothecium sambuci (incl. Paramicrothecium gen. nov.)ondeadstemsof Sambucus nigra. India, Aureobasidium microtermitis from the gut of a Microtermes sp. termite, Laccaria diospyricola on soil and Phylloporia tamilnadensis on branches of Catunaregam spinosa. Iran, Pythium serotinoosporum from soil under Prunus dulcis. Italy, Pluteus brunneovenosus on twigs of broad leaved trees on the ground. Japan, Heterophoma rehmanniae on leaves of Rehmannia glutinosa f. hueichingensis. Kazakhstan, Murispora kazachstanica from healthy roots of Triticum aestivum. Namibia, Caespitomonium euphorbiae (incl. Caespitomonium gen. nov.)from stems of an Euphorbia sp. Netherlands, Alfaria junci, Myrmecridium junci, Myrmecridium juncicola, Myrmecridium juncigenum, Ophioceras junci, Paradinemasporium junci (incl. Paradinemasporium gen. nov.), Phialoseptomonium junci, Sporidesmiella juncicola, Xenopyricularia junci and Zaanenomyces quadripartis (incl. Zaanenomyces gen. nov.), fromdeadculmsof Juncus effusus, Cylindromonium everniae and Rhodoveronaea everniae from Evernia prunastri, Cyphellophora sambuci and Myrmecridium sambuci from Sambucus nigra, Kiflimonium junci, Saro cladium junci, Zaanenomyces moderatricis academiae and Zaanenomyces versatilis from dead culms of Juncus inflexus, Microcera physciae from Physcia tenella, Myrmecridium dactylidis from dead culms of Dactylis glomerata, Neochalara spiraeae and Sporidesmium spiraeae from leaves of Spiraea japonica, Neofabraea salicina from Salix sp., Paradissoconium narthecii (incl. Paradissoconium gen. nov.)from dead leaves of Narthecium ossifragum, Polyscytalum vaccinii from Vaccinium myrtillus, Pseudosoloacrosporiella cryptomeriae (incl. Pseudosoloacrosporiella gen. nov.)fromleavesof Cryptomeria japonica, Ramularia pararhabdospora from Plantago lanceolata, Sporidesmiella pini from needles of Pinus sylvestris and Xenoacrodontium juglandis (incl. Xenoacrodontium gen. nov. and Xenoacrodontiaceae fam. nov.)from Juglans regia. New Zealand, Cryptometrion metrosideri from twigs of Metrosideros sp., Coccomyces pycnophyllocladi from dead leaves of Phyllocladus alpinus, Hypoderma aliforme from fallen leaves Fuscopora solandri and Hypoderma subiculatum from dead leaves Phormium tenax. Norway, Neodevriesia kalakoutskii from permafrost and Variabilispora viridis from driftwood of Picea abies. Portugal, Entomortierella hereditatis from abio film covering adeteriorated limestone wall. Russia, Colpoma junipericola from needles of Juniperus sabina, Entoloma cinnamomeum on soil in grasslands, Entoloma verae on soil in grasslands, Hyphodermella pallidostraminea on a dry dead branch of Actinidia sp., Lepiota sayanensis onlitterinamixedforest, Papiliotrema horticola from Malus communis , Paramacroventuria ribis (incl. Paramacroventuria gen. nov.)fromleaves of Ribes aureum and Paramyrothecium lathyri from leaves of Lathyrus tuberosus. South Africa, Harzia combreti from leaf litter of Combretum collinum ssp. sulvense, Penicillium xyleborini from Xyleborinus saxesenii , Phaeoisaria dalbergiae from bark of Dalbergia armata, Protocreopsis euphorbiae from leaf litter of Euphorbia ingens and Roigiella syzygii from twigs of Syzygium chordatum. Spain, Genea zamorana on sandy soil, Gymnopus nigrescens on Scleropodium touretii, Hesperomyces parexochomi on Parexochomus quadriplagiatus, Paraphoma variabilis from dung, Phaeococcomyces kinklidomatophilus from a blackened metal railing of an industrial warehouse and Tuber suaveolens in soil under Quercus faginea. Svalbard and Jan Mayen, Inocybe nivea associated with Salix polaris. Thailand, Biscogniauxia whalleyi oncorticatedwood. UK, Parasitella quercicola from Quercus robur. USA , Aspergillus arizonicus from indoor air in a hospital, Caeliomyces tampanus (incl. Caeliomyces gen. nov.)fromoffice dust, Cippumomyces mortalis (incl. Cippumomyces gen. nov.)fromatombstone, Cylindrium desperesense from air in a store, Tetracoccosporium pseudoaerium from air sample in house, Toxicocladosporium glendoranum from air in a brick room, Toxicocladosporium losalamitosense from air in a classroom, Valsonectria portsmouthensis from airinmen'slockerroomand Varicosporellopsis americana from sludge in a water reservoir. Vietnam, Entoloma kovalenkoi on rotten wood, Fusarium chuoi inside seed of Musa itinerans , Micropsalliota albofelina on soil in tropical evergreen mixed forest sand Phytophthora docyniae from soil and roots of Docynia indica. Morphological and culture characteristics are supported by DNA barcodes
Π’ΠΎΡΠ½Ρ Π½Π΅ΡΡΠ²Π½ΠΎΡΡΡ ΡΡΠ·Π½ΠΈΡ ΠΌΠ΅ΡΡΠΈΠΊ Π½Π° ΠΊΠ»Π°ΡΠ°Ρ ΡΡΠ½ΠΊΡΡΠΉ ΡΠ· Π·Π°Π΄Π°Π½ΠΎΡ ΡΡΠ½ΠΊΡΡΡΡ ΠΏΠΎΡΡΠ²Π½ΡΠ½Π½Ρ
For any $q > p > 0$-Π½ΠΎΡΠΌ Π΄ΠΎΠ΄Π°ΡΠ½ΠΎΡ Ρ Π²ΡΠ΄'ΡΠΌΠ½ΠΎΡ ΡΠ°ΡΡΠΈΠ½
Bacterial L-asparaginases and glutamine(asparagine)ases: Some properties, structure and antitumour activity
Experimental material on structurally and functional organization, regulation of biosynthesis and activity, mechanism of action, genetic determinants, heterologous expression of bacterial L-asparaginases is accumulated. The modern approaches to isolation and purification of these enzymes, some questions of practical using in oncology in the schedules combined chemotherapy of leukemia the native and modified forms of L-asparaginases are discussed. The some.results before carried out in the IBMC RAMS and number institutes of the Russia on study bacterial L-asparaginases and glutamine(asparagine)ases are summarized
Bacterial L-asparaginases and glutamine(asparagine)ases: Some properties, structure and antitumour activity
Experimental material on structurally and functional organization, regulation of biosynthesis and activity, mechanism of action, genetic determinants, heterologous expression of bacterial L-asparaginases is accumulated. The modern approaches to isolation and purification of these enzymes, some questions of practical using in oncology in the schedules combined chemotherapy of leukemia the native and modified forms of L-asparaginases are discussed. The some.results before carried out in the IBMC RAMS and number institutes of the Russia on study bacterial L-asparaginases and glutamine(asparagine)ases are summarized
It staff turnover: Causes and management tools
The article is devoted to the analysis of the turnover causes and retention tools for IT specialists during the period of deep transformation of the corresponding segment of the labor market. For companies, a serious challenge is the outflow of highly qualified specialists and a large number of vacancies that stimulate excessive inter-organizational mobility. The purpose of this study is to develop a system of tools that can keep the turnover rates of IT specialists at an acceptable level. The study was conducted in the IT departments of three regional divisions of large federal organizations in December 2022 by the survey method (questionnaire and Exit interview). According to the study, the main quit causes are getting a more interesting offer from another employer and dissatisfaction with wages. The authors proposed the use of retention tools, which are grouped into the following groups: motivating, team-building, career, supportive. The article has practical value, since the presented tools can be used in various organizations to prevent excessive turnover
Clinical case of special legal liability which is the result of a doctor when combination of specialties
We analyzed a forensic case related to an unfavorable outcome of medical care by a pediatrician. One of the reasons for the unfavorable outcome of medical care was the combination of pediatric and pediatric neurology specialties by the doctor, which, according to experts, contributed to an incorrect assessment of the severity of the child's condition and incorrect assessment of general cerebral symptoms and neurological disorders, without proper differentiation. As a result, the diagnostic was not fully provided, and more serious diseases at the time were not excluded. We determined the objective and subjective aspects of liability for combination several specialties. A medical-legal and forensic assessment of a specific unfavorable outcome of medical practice is given. It is concluded that any combination of different specialties by a doctor not only requires additional professional duties but, at the same time, creates additional legal risks in term of criminal law, which should be taken into account by each specialist who has assumed additional obligations
The role of the antisperm antibodies in male infertility assessment after microsurgical varicocelectomy
Antisperm antibodies (ASA) are a cause of male infertility. ASA are often found in varicocele patients. The study objective was to assess the ASA role in fertility recovery after varicocelectomy. The longitudinal study involved 99 patients with varicocele. Patients were examined according to the WHO recommendations; ASA level was measured using the direct method of Sperm MAR test: 66 patients were ASA-negative, 33 had MAR-IgG β₯ 10%. All patients underwent microsurgical varicocelectomy. Student's t-test, Wilcoxon test, Chi-squared test and signed rank test were used for data analysis. The retrospective analysis of all operated patients data showed that the patients without spermiogram improvement after varicocelectomy had higher ASA levels. 3 months after the surgery, the initially ASA-negative varicocele patients demonstrated 2.5 times increase in number of progressive motile spermatozoa in the ejaculate (p 0.05). The main outcome in this group was a favourable response to the surgery (ASA level decrease) vs. no reduction in autoimmune process. The improvement in the ASA-positive group was demonstrated in the patients with higher varicocele grade (median--2 vs. 1; p < 0.05) and lower ASA level (MAR-IgG = 48% vs. 92%; p < 0.01). The pregnancy rate within a year after surgery was 2.8 times more frequent in couples with ASA-negative men: 39% (25 of 65) in the ASA-negative group compared to 14% (4 of 28) in the ASA-positive group (p < 0.05). Thus, antisperm immune response decreases the varicocelectomy efficacy for reproductive function recovery: the higher percentage of ASA and lower grade of varicocele are associated with an unfavourable prognosis. Β© 2014 American Society of Andrology and European Academy of Andrology