27 research outputs found

    Multi-Dimensional Sigma-Functions

    Full text link
    In 1997 the present authors published a review (Ref. BEL97 in the present manuscript) that recapitulated and developed classical theory of Abelian functions realized in terms of multi-dimensional sigma-functions. This approach originated by K.Weierstrass and F.Klein was aimed to extend to higher genera Weierstrass theory of elliptic functions based on the Weierstrass σ\sigma-functions. Our development was motivated by the recent achievements of mathematical physics and theory of integrable systems that were based of the results of classical theory of multi-dimensional theta functions. Both theta and sigma-functions are integer and quasi-periodic functions, but worth to remark the fundamental difference between them. While theta-function are defined in the terms of the Riemann period matrix, the sigma-function can be constructed by coefficients of polynomial defining the curve. Note that the relation between periods and coefficients of polynomials defining the curve is transcendental. Since the publication of our 1997-review a lot of new results in this area appeared (see below the list of Recent References), that promoted us to submit this draft to ArXiv without waiting publication a well-prepared book. We complemented the review by the list of articles that were published after 1997 year to develop the theory of σ\sigma-functions presented here. Although the main body of this review is devoted to hyperelliptic functions the method can be extended to an arbitrary algebraic curve and new material that we added in the cases when the opposite is not stated does not suppose hyperellipticity of the curve considered.Comment: 267 pages, 4 figure

    Periods of second kind differentials of (n,s)-curves

    Full text link
    For elliptic curves, expressions for the periods of elliptic integrals of the second kind in terms of theta-constants, have been known since the middle of the 19th century. In this paper we consider the problem of generalizing these results to curves of higher genera, in particular to a special class of algebraic curves, the so-called (n,s)(n,s)-curves. It is shown that the representations required can be obtained by the comparison of two equivalent expressions for the projective connection, one due to Fay-Wirtinger and the other from Klein-Weierstrass. As a principle example, we consider the case of the genus two hyperelliptic curve, and a number of new Thomae and Rosenhain-type formulae are obtained. We anticipate that our analysis for the genus two curve can be extended to higher genera hyperelliptic curves, as well as to other classes of (n,s)(n,s) non-hyperelliptic curves.Comment: 21 page

    Sigma, tau and Abelian functions of algebraic curves

    Full text link
    We compare and contrast three different methods for the construction of the differential relations satisfied by the fundamental Abelian functions associated with an algebraic curve. We realize these Abelian functions as logarithmic derivatives of the associated sigma function. In two of the methods, the use of the tau function, expressed in terms of the sigma function, is central to the construction of differential relations between the Abelian functions.Comment: 25 page

    Algebraic description of Jacobians isogeneous to certain Prym varieties with polarization (1,2)

    Get PDF
    For a class of non-hyperelliptic genus 3 curves C which are 2-fold coverings of elliptic curves E, we give an explicit algebraic description of all birationally non-equivalent genus 2 curves whose Jacobians are degree 2 isogeneous to the Prym varieties associated to such coverings. Our description is based on previous studies of Prym varieties with polarization (1,2) in connection with separation of variables in a series of classical and new algebraic integrable systems linearized on such varieties. We also consider some special cases of the covering C -> E, in particular, when the corresponding Prym varieties contain pairs of elliptic curves and the Jacobian of C is isogeneous (but not isomorphic) to the product of 3 different elliptic curves. Our description is accompanied with explicit numerical examples.Comment: 51 pages, 3 figures, 3 diagram

    Abelian Functions for Trigonal Curves of Genus Three

    Full text link
    We develop the theory of generalized Weierstrass sigma- and \wp-functions defined on a trigonal curve of genus three. In particular we give a list of the associated partial differential equations satisfied by the \wp-functions, a proof that the coefficients of the power series expansion of the sigma-function are polynomials of moduli parameters, and the derivation of two addition formulae.Comment: 32 pages, no figures. Revised version has the a fuller description of the general (3,4) trigonal curve results, the first version described only the "Purely Trigonal" cas
    corecore