1 research outputs found

    Автоматизация управления электроприводом обитаемого подводного аппарата

    Get PDF
    Currently, there is an intensive development of manned and unmanned submersibles due to development of offshore oil and gas fields, development of underwater archaeology and exploration activities in transit zones regarding seabed mineral extraction. The depth of immersion and the nature of the underwater technical works performed determine not only the design of the underwater vehicle, its power-to-weight ratio and technical equipment, but also impose high requirements on reliability, survivability, and habitability, if the underwater vehicle implies that the operator is on board inside a pressure hull. The main objectives of the study carried out by the authors were to achieve high reliability and survivability of the main elements of the propulsion-steering complex, which ensure movement of a human-occupied vehicle in the water column, its positioning and retention at a given point in the water area.For this purpose, it was proceeded to development of an automated control system for the electric drive of the propulsive device of manned immersible. The proposed developments include a flowchart of the movement control system, circuitry engineering solutions using power semiconductor devices to maintain operability of the electric drive in extreme and emergency operating conditions, and movement control algorithms. Electromagnetic calculations of the active part of the electric machine were performed by the finite element method, considering the geometric features of the dental zone of the rotor and stator. The proposed mathematical apparatus served to calculate optimal control actions of the electric drive and to quantitatively assess the reduction in electrical losses once optimal control was applied. The calculation of the optimal control parameters was carried out using the maximum principle. The initial conditions for auxiliary functions are determined by the Newton‒ Raphson method. A comparison of various modes of operation of the electric drive was made regarding their influence on duration of the campaign, and other parameters.The calculations did not consider the parameters and geometry of the propulsive device (the propeller) since the developers of electric propulsion systems for manned and unmanned underwater vehicles of various classes often deliberately reduce the efficiency of the propeller to increase speed of the electric motor shaft, resulting in a decrease in the dimensions and weight of the latter.В настоящее время происходит интенсивное развитие обитаемых и необитаемых подводных аппаратов благодаря освоению шельфовых нефтегазовых месторождений, развитию подводной археологии и геологоразведочной деятельности в транзитных зонах относительно добычи полезных ископаемых с морского дна. Глубина погружения и характер выполняемых подводно-технических работ определяют не только конструктивное исполнение подводного аппарата, его энерговооруженность и техническую оснащенность, но и предъявляют высокие требования по надёжности, живучести и обитаемости в случае, если подводный аппарат подразумевает нахождение оператора на борту внутри прочного корпуса. Основные цели проведённого авторами исследования – это достижение высоких показателей надёжности и живучести основных элементов движительно-рулевого комплекса, обеспечивающих движение обитаемого подводного аппарата в толще воды, его позиционирование и удержание в заданной точке акватории.Для этого была проведена разработка автоматизированной системы управления электроприводом движителей обитаемого подводного аппарата. Предложена блок-схема системы управления движением, разработаны схемотехнические решения с использованием силовых полупроводниковых приборов для поддержания работоспособности электропривода в экстремальных и аварийных условиях эксплуатации, разработаны алгоритмы управления движением. Электромагнитные расчёты активной части электрической машины выполнены методом конечных элементов с учётом геометрических особенностей зубцовой зоны ротора и статора. На основе предложенного математического аппарата рассчитаны оптимальные управляющие воздействия электроприводом и дана количественная оценка по снижению электрических потерь при оптимальном управлении. Расчёт оптимальных параметров управления осуществлялся с помощью принципа максимума. Начальные условия для вспомогательных функций определены методом Ньютона–Рафсона. Проведено сравнение различных режимов работы электропривода с их влиянием на продолжительность кампании и другие показатели.В проведённых расчётах не учитывались параметры и геометрия движителя – гребного винта, потому как разработчики систем электродвижения обитаемых и необитаемых подводных аппаратов различного класса часто намеренно идут на снижение коэффициента полезного действия винта в угоду увеличению частоты вращения вала электродвигателя, следствием чего является снижение габаритов и массы последнего
    corecore