493 research outputs found

    Solitary waves in three-dimensional crystal-like structures

    Full text link
    The motion of three-dimensional (3D) solitary waves and solitons in nonlinear crystal-like structures, such as photonic materials, is studied. It is demonstrated that collective excitations in these systems can be tailored to move in particular directions of the 3D system. The effect of modulation instability is studied showing that in some cases it can be delayed by using a lensing factor. Analytical results supported by numerical simulations are presented.Comment: 4 page

    Universal Features of the Time Evolution of Evanescent Modes in a Left-Handed Perfect Lens

    Full text link
    The time evolution of evanescent modes in Pendry's perfect lens proposal for ideally lossless and homogeneous, left-handed materials is analyzed. We show that time development of sub-wavelength resolution exhibits universal features, independent of model details. This is due to the unavoidable near-degeneracy of surface electromagnetic modes in the deep sub-wavelength region. By means of a mechanical analog, it is shown that an intrinsic time scale (missed in stationary studies) has to be associated with any desired lateral resolution. A time-dependent cut-off length emerges, removing the problem of divergences claimed to invalidate Pendry's proposal.Comment: 4 pages, 3 figures, title slightly changed, reference added, minor correction

    Nonlinear properties of left-handed metamaterials

    Full text link
    We analyze nonlinear properties of microstructured materials with negative refraction, the so-called left-handed metamaterials. We consider a two-dimensional periodic structure created by arrays of wires and split-ring resonators embedded into a nonlinear dielectric, and calculate the effective nonlinear electric permittivity and magnetic permeability. We demonstrate that the hysteresis-type dependence of the magnetic permeability on the field intensity allows changing the material from left- to right-handed and back. These effects can be treated as the second-order phase transitions in the transmission properties induced by the variation of an external field.Comment: 4 pages, 3 figure

    Enhanced parametric processes in binary metamaterials

    Full text link
    We suggest double-resonant (binary) metamaterials composed of two types of magnetic resonant elements, and demonstrate that in the nonlinear regime such metamaterials provide unique possibilities for phase-matched parametric interaction and enhanced second-harmonic generation

    Second-harmonic generation in nonlinear left-handed metamaterials

    Full text link
    We study the second-harmonic generation in left-handed metamaterials with a quadratic nonlinear response. We demonstrate a novel type of the exact phase matching between the backward propagating wave of the fundamental frequency and the forward propagating wave of the second harmonics. We show that this novel parametric process can convert a surface of the left-handed metamaterial into an effective mirror totally reflecting the second harmonics generated by an incident wave. We derive and analyze theoretically the coupled-mode equations for a semi-infinite nonlinear metamaterial. We also study numerically the second-harmonic generation by a metamaterial slab of a finite thickness, and reveal the existence of multistable nonlinear effects.Comment: 6 pages, 6 figure

    Refraction at Media with Negative Refractive Index

    Full text link
    We show that an electromagnetic (EM) wave undergoes negative refraction at the interface between a positive and negative refractive index material. Finite difference time domain (FDTD) simulations are used to study the time evolution of an EM wave as it hits the interface. The wave is trapped temporarily at the interface and after a long time, the wave front moves eventually in the negative direction. This explains why causality and speed of light are not violated in spite of the negative refraction always present in a negative index material.Comment: 5 pages, 4 figures, submitted to Phys. Rev. Let

    Finite-size effects of a left-handed material slab on the image quality

    Full text link
    The characteristics of an imaging system formed by a left-handed material (LHM) slab of finite length are studied, and the influence of the finite length of the slab on the image quality is analyzed. Unusual phenomena such as surface bright spots and negative energy stream at the image side are observed and explained as the cavity effects of surface plasmons excited by the evanescent components of the incident field. For a thin LHM slab, the cavity effects are found rather sensitive to the length of the slab, and the bright spots on the bottom surface of the slab may stretch to the image plane and degrade the image quality.Comment: changes in the content and the title, and also the figure

    Reverse Doppler effect in backward spin waves scattered on acoustic waves

    Full text link
    We report on the observation of reverse Doppler effect in backward spin waves reflected off of surface acoustic waves. The spin waves are excited in a yttrium iron garnet (YIG) film. Simultaneously, acoustic waves are also generated. The strain induced by the acoustic waves in the magnetostrictive YIG film results in the periodic modulation of the magnetic anisotropy in the film. Thus, in effect, a travelling Bragg grating for the spin waves is produced. The backward spin waves reflecting off of this grating exhibit a reverse Doppler shift: shifting down rather than up in frequency when reflecting off of an approaching acoustic wave. Similarly, the spin waves are shifted up in frequency when reflecting from receding acoustic waves.Comment: 4 pages, 3 figure
    • …
    corecore