41 research outputs found

    Magnetoelastic Interactions in Pyrochlore Pr2Zr2O7

    Full text link
    Автор выражает благодарность профессору Борису Залмановичу Малкину за ценные замечания.Magnetic field dependences of the forced magnetostriction in PrZr single crystals are calculated. Opposite signs of the longitudinal and transversal parastriction in magnetic fields parallel to the rhombic and trigonal symmetry axes in PrZr and TbTi are revealed from our simulations

    Crystal field and magnetoelastic interactions in Tb2Ti 2O7

    Get PDF
    In terms of a semiphenomenological exchange charge model, we have obtained estimates of parameters of the crystal field and parameters of the electron-deformation interaction in terbium titanate Tb2Ti 2O7 with a pyrochlore structure. The obtained set of parameters has been refined based on the analysis of spectra of neutron inelastic scattering and Raman light scattering, field dependences of the forced magnetostriction, and temperature dependences of elastic constants. © 2014 Pleiades Publishing, Ltd

    Structural and Magnetic Investigations of Single-Crystals of the Neodymium Zirconate Pyrochlore, Nd2Zr2O7

    Get PDF
    We report structural and magnetic properties studies of large high quality single-crystals of the frustrated magnet, Nd2_2Zr2_2O7_7. Powder x-ray diffraction analysis confirms that Nd2_2Zr2_2O7_7 adopts the pyrochlore structure. Room-temperature x-ray diffraction and time-of-flight neutron scattering experiments show that the crystals are stoichiometric in composition with no measurable site disorder. The temperature dependence of the magnetic susceptibility shows no magnetic ordering at temperatures down to 0.5 K. Fits to the magnetic susceptibility data using a Curie-Weiss law reveal a ferromagnetic coupling between the Nd moments. Magnetization versus field measurements show a local Ising anisotropy along the axes of the Nd3+^{3+} ions in the ground state. Specific heat versus temperature measurements in zero applied magnetic field indicate the presence of a thermal anomaly below T7T\sim7 K, but no evidence of magnetic ordering is observed down to 0.5 K. The experimental temperature dependence of the single-crystal bulk dc susceptibility and isothermal magnetization are analyzed using crystal field theory and the crystal field parameters and exchange coupling constants determined.Comment: 10 pages, 6 figures, 4 tables. Accepted for publication in Physical Review

    Simulations of magnetic and magnetoelastic properties of Tb 2Ti 2O 7 in paramagnetic phase

    Get PDF
    Magnetic and magnetoelastic properties of terbium titanate pyrochlore in paramagnetic phase are simulated. The magnetic field and temperature dependences of magnetization and forced magnetostriction in Tb 2Ti 2O 7 single crystals and polycrystalline samples are calculated in the framework of exchange charge model of crystal field theory and a mean field approximation. The set of electron-deformation coupling constants has been determined. Variations of elastic constants with temperature and applied magnetic field are discussed. Additional strong softening of the crystal lattice at liquid helium temperatures in the magnetic field directed along the rhombic symmetry axis is predicted

    Oxidation and magnetic states of chalcopyrite CuFeS2: A first principles calculation

    Get PDF
    The ground state band structure, magnetic moments, charges and population numbers of electronic shells of Cu and Fe atoms have been calculated for chalcopyrite CuFeS2 using density functional theory. The comparison between our calculation results and experimental data (X-ray photoemission, X-ray absorption and neutron diffraction spectroscopy) has been made. Our calculations predict a formal oxidation state for chalcopyrite as Cu 1+Fe3+S2 2-. However, the assignment of formal valence state to transition metal atoms appears to be oversimplified. It is anticipated that the valence state can be confirmed experimentally by nuclear magnetic and nuclear quadrupole resonance and Mössbauer spectroscopy methods. © 2014 Pleiades Publishing, Ltd

    Application of 57Fe Mössbauer spectroscopy as a tool for mining exploration of bornite (Cu5FeS4) copper ore

    Get PDF
    Nuclear resonance methods, including Mössbauer spectroscopy,are considered as unique techniques suitable for remote on-line mineralogical analysis. The employment of these methods provides potentially significant commercial benefits for mining industry. As applied to copper sulfide ores, Mössbauer spectroscopy method is suitable for the analysis noted. Bornite (formally Cu5FeS4) is a significant part of copper ore and identification of its properties is important for economic exploitation of commercial copper ore deposits. A series of natural bornite samples was studied by 57Fe Mössbauer spectroscopy. Two aspects were considered: reexamination of 57Fe Mössbauer properties of natural bornite samples and their stability irrespective of origin and potential use of miniaturized Mössbauer spectrometers MIMOS II for in-situ bornite identification. The results obtained show a number of potential benefits of introducing the available portative Mössbauer equipment into the mining industry for express mineralogical analysis. In addition, results of some preliminary 63,65Cu nuclear quadrupole resonance (NQR) studies of bornite are reported and their merits with Mössbauer techniques for bornite detection discussed. © 2013 Springer Science+Business Media Dordrecht

    Simulations of magnetic and magnetoelastic properties of Tb2Ti2O7 in paramagnetic phase

    Full text link
    Magnetic and magnetoelastic properties of terbium titanate pyrochlore in paramagnetic phase are simulated. The magnetic field and temperature dependences of magnetization and forced magnetostriction in Tb2Ti2O7 single crystals and polycrystalline samples are calculated in the framework of exchange charge model of crystal field theory and a mean field approximation. The set of electron-deformation coupling constants has been determined. Variations of elastic constants with temperature and applied magnetic field are discussed. Additional strong softening of the crystal lattice at liquid helium temperatures in the magnetic field directed along the rhombic symmetry axis is predicted.Comment: 13 pages, 4 figures, 2 table

    NQR/NMR and Mössbauer spectroscopy of sulfides: Potential and versatility

    Get PDF
    Nuclear quadrupole resonance (NQR), nuclear magnetic resonance (NMR) and nuclear gamma-resonance (NGR or Mössbauer Effect) methods are generally described as highly sensitive tools in studies of local electronic structure and symmetry in solid-state materials. This is due to high informativity in electronic structure investigations, high resolution in phase-structural diagnostics (down to nano-scale), possibility to study polycrystalline and complex compounds, and to the non-destructive character of these methods. As applied to Earth sciences, both NQR/NMR and Mössbauer spectroscopy methods contribute to mineralogical material science and mineral physics. Another important aspect is the fact that these methods, as demonstrated recently, belong to unique techniques suitable for on-line bulk mineralogical analysis. This includes remotely operated sensors used with conveyor systems in mining/materials handling and similar applications where real-time data collection/processing provides significant commercial benefits. These developments open new pathways for NQR/NMR and Mössbauer spectroscopy applications. Notably, NQR/NMR and Mössbauer effects are observed primarily on different nuclei-probes but provide similar information about the local properties of materials (hyperfine fields, electric field gradients and relaxation effects). This makes NQR/NMR and Mössbauer methods mutually complementary despite their significant technical differences. This paper includes examples of recent applications of NQR, NMR and Mössbauer spectroscopic tools to studies of copper-, antimony- and iron-containing sulfides, demonstrating how these methods can contribute to an improved understanding of geochemical problems. © 2013 E. Schweizerbart'sche Verlagsbuchhandlung, D-70176 Stuttgart
    corecore