1,098,892 research outputs found

    Statistical properties of fracture in a random spring model

    Get PDF
    Using large scale numerical simulations we analyze the statistical properties of fracture in the two dimensional random spring model and compare it with its scalar counterpart: the random fuse model. We first consider the process of crack localization measuring the evolution of damage as the external load is raised. We find that, as in the fuse model, damage is initially uniform and localizes at peak load. Scaling laws for the damage density, fracture strength and avalanche distributions follow with slight variations the behavior observed in the random fuse model. We thus conclude that scalar models provide a faithful representation of the fracture properties of disordered systems.Comment: 12 pages, 17 figures, 1 gif figur

    Dislocation-Mediated Melting in Superfluid Vortex Lattices

    Full text link
    We describe thermal melting of the two-dimensional vortex lattice in a rotating superfluid by generalizing the Halperin and Nelson theory of dislocation-mediated melting. and derive a melting temperature proportional to the renormalized shear modulus of the vortex lattice. The rigid-body rotation of the superfluid attenuates the effects of lattice compression on the energy of dislocations and hence the melting temperature, while not affecting the shearing. Finally, we discuss dislocations and thermal melting in inhomogeneous rapidly rotating Bose-Einstein condensates; we delineate a phase diagram in the temperature -- rotation rate plane, and infer that the thermal melting temperature should lie below the Bose-Einstein transition temperature.Comment: 9 pages, 2 figure
    • …
    corecore