5,752 research outputs found

    Integrability of the symmetry reduced bosonic dynamics and soliton generating transformations in the low energy heterotic string effective theory

    Full text link
    Integrable structure of the symmetry reduced dynamics of massless bosonic sector of the heterotic string effective action is presented. For string background equations that govern in the space-time of DD dimensions (D≥4D\ge 4) the dynamics of interacting gravitational, dilaton, antisymmetric tensor and any number n≥0n\ge 0 of Abelian vector gauge fields, all depending only on two coordinates, we construct an \emph{equivalent} (2d+n)×(2d+n)(2 d+n)\times(2 d+n) matrix spectral problem (d=D−2d=D-2). This spectral problem provides the base for the development of various solution constructing procedures (dressing transformations, integral equation methods). For the case of the absence of Abelian gauge fields, we present the soliton generating transformations of any background with interacting gravitational, dilaton and the second rank antisymmetric tensor fields. This new soliton generating procedure is available for constructing of various types of field configurations including stationary axisymmetric fields, interacting plane, cylindrical or some other types of waves and cosmological solutions.Comment: 4 pages; added new section on Belinski-Zakharov solitons and new expressions for calculation of the conformal factor; corrected typo

    Soliton Nature of Equilibrium State of Two Charged Masses in General Relativity

    Full text link
    New derivation of static equilibrium state for two charged masses in General Relativity is given in the framework of the Inverse Scattering Method as an alternative to our previous derivation of this solution by the Integral Equation Method. This shows that such solution is of solitonic character and represents the particular case of more general (12-parametric) stationary axisymmetric electrovacuum two-soliton solution for two rotating charged objects obtained by one of the authors in 1986. This result gives an additional support to our comprehension that the appropriate analytical continuations of solitonic solutions in the space of their parameters are always possible and that applicability of the Inverse Scattering Method in presence of electromagnetic field is not restricted only to the cases with naked singularities.Comment: 7 pages, RevTeX

    Representation Theory of Chern Simons Observables

    Full text link
    Recently we suggested a new quantum algebra, the moduli algebra, which was conjectured to be a quantum algebra of observables of the Hamiltonian Chern Simons theory. This algebra provides the quantization of the algebra of functions on the moduli space of flat connections on a 2-dimensional surface. In this paper we classify unitary representations of this new algebra and identify the corresponding representation spaces with the spaces of conformal blocks of the WZW model. The mapping class group of the surface is proved to act on the moduli algebra by inner automorphisms. The generators of these automorphisms are unitary elements of the moduli algebra. They are constructed explicitly and proved to satisfy the relations of the (unique) central extension of the mapping class group.Comment: 63 pages, late

    Monodromy transform and the integral equation method for solving the string gravity and supergravity equations in four and higher dimensions

    Full text link
    The monodromy transform and corresponding integral equation method described here give rise to a general systematic approach for solving integrable reductions of field equations for gravity coupled bosonic dynamics in string gravity and supergravity in four and higher dimensions. For different types of fields in space-times of D≥4D\ge 4 dimensions with d=D−2d=D-2 commuting isometries -- stationary fields with spatial symmetries, interacting waves or partially inhomogeneous cosmological models, the string gravity equations govern the dynamics of interacting gravitational, dilaton, antisymmetric tensor and any number n≥0n\ge 0 of Abelian vector gauge fields (all depending only on two coordinates). The equivalent spectral problem constructed earlier allows to parameterize the infinite-dimensional space of local solutions of these equations by two pairs of \cal{arbitrary} coordinate-independent holomorphic d×dd\times d- and d×nd\times n- matrix functions u±(w),v±(w){\mathbf{u}_\pm(w), \mathbf{v}_\pm(w)} of a spectral parameter ww which constitute a complete set of monodromy data for normalized fundamental solution of this spectral problem. The "direct" and "inverse" problems of such monodromy transform --- calculating the monodromy data for any local solution and constructing the field configurations for any chosen monodromy data always admit unique solutions. We construct the linear singular integral equations which solve the inverse problem. For any \emph{rational} and \emph{analytically matched} (i.e. u+(w)≡u−(w)\mathbf{u}_+(w)\equiv\mathbf{u}_-(w) and v+(w)≡v−(w)\mathbf{v}_+(w)\equiv\mathbf{v}_-(w)) monodromy data the solution for string gravity equations can be found explicitly. Simple reductions of the space of monodromy data leads to the similar constructions for solving of other integrable symmetry reduced gravity models, e.g. 5D minimal supergravity or vacuum gravity in D≥4D\ge 4 dimensions.Comment: RevTex 7 pages, 1 figur

    Superposition of fields of two Reissner - Nordstrom sources

    Full text link
    In this paper we present a 5-parametric family of static asymptotically flat solutions for the superposed gravitational and electromagnetic fields of two Reissner-Nordstr\"om sources with arbitrary parameters -- masses, charges and separating distance. A procedure for solving of the linear singular integral equation form of the electrovacuum Einstein - Maxwell equations for stationary axisymmetric fields is described in detail. The 4-parametric family of equilibrium configurations of two Reissner-Nordstr\"om sources (one of which should be a black hole and another one -- a naked singularity) presented in our recent paper \cite{Alekseev-Belinski:2007} arises after a restriction of the parameters of the 5-parametric solution presented here by the equilibrium condition which provides the absence in the solution of conical points on the symmetry axis between the sources.Comment: 24 pages, submitted to the Proceedings of the Eleventh Marcel Grossmann Meeting (Berlin, July 23 - 29, 2006

    Optical chaos in nonlinear photonic crystals

    Get PDF
    We examine a spatial evolution of lightwaves in a nonlinear photonic crystal with a quadratic nonlinearity when simultaneously a second harmonic and a sum-frequency generation are quasi-phase-matched. We find the conditions of a transition to Hamiltonian chaos for different amplitudes of lightwaves at the boundary of the crystal.Comment: LaTEX2e, 5 pages, 4 figure

    Direct current generation due to harmonic mixing: From bulk semiconductors to semiconductor superlattices

    Get PDF
    We discuss an effect of dc current and dc voltage (stopping bias) generation in a semiconductor superlattice subjected by an ac electric field and its phase-shifted n-th harmonic. In the low field limit, we find a simple dependence of dc voltage on a strength, frequency, and relative phase of mixing harmonics for an arbitrary even value of n. We show that the generated dc voltage has a maximum when a frequency of ac field is of the order of a scattering constant of electrons in a superlattice. This means that for typical semiconductor superlattices at room temperature operating in the THz frequency domain the effect is really observable. We also made a comparison of a recent paper describing an effect of a directed current generation in a semiconductor superlattice subjected by ac field and its second harmonic (n=2) [K.Seeger, Appl.Phys.Lett. 76(2000)82] with our earlier findings describing the same effect [K.Alekseev et al., Europhys. Lett. 47(1999)595; cond-mat/9903092 ]. For the mixing of an ac field and its n-th harmonic with n>=4, we found that additionally to the phase-shift controlling of the dc current, there is a frequency control. This frequency controlling of the dc current direction is absent in the case of n=2. The found effect is that, both the dc current suppression and the dc current reversals exist for some particular values of ac field frequency. For typical semiconductor superlattices such an interesting behavior of the dc current should be observable also in the THz domain. Finally, we briefly review the history of the problem of the dc current generation at mixing of harmonics in semiconductors and semiconductor microstructures.Comment: 9 pages, 1 figure, RevTEX, EPS
    • …
    corecore