53 research outputs found
Forward Yields of the Secondary Light Nuclei in CC-collisions at Beam Energy 20.5 GeV/n on the Accelerator U-70 in Comparison with Models UrQMD, FTFP-BERT-EMV and QGSP-FTFP-BERT-EMV in the Framework of Geant4
The zero angle production of light nuclei has been studied in CC-interactions at beam energy 20.5 GeV/n on accelerator U-70. The measurements were performed with employing of the beamline no. 22 as spectrometer of secondary particles with verying its rigidity from 10 to 70 GeV/c. We observed secondary protons and deuterons with momenta above kinematic limit of NN-interactions. The measured dependence of forward yields on momentum are compared with the model predictions in the framework of Geant4. The models more or less correctly give positions of maxima of the distributions and their general qualitative dependence on the momentum. But in the quantitative predictions of the yields there are significant differences with the experiment which grow with increase of atomic mass number A
Comparison of the novel START vascular stiffness index with the CAVI index, assessment of their values and correlations with clinical parameters
Aim. To compare the cardio-ankle vascular index (CAVI) and the novel START vascular stiffness index and assess their values and correlations with clinical parameters.Material and methods. This multicenter study included 928 (403 men and 525 women) randomly selected patients, aged 18 to 89 years (mean age, 41±15,8 years). Inclusion criteria were age over 18 years. There were following exclusion criteria: mental disorder, severe somatic diseases and cancer, contraindications for volume sphygmography using the Fukuda Denshi VS-1500 VaSera system, no patient consent, ankle-brachial index <1,0 and >1,3. Further, according to the main parameters obtained using volum sphygmography, a novel START index was calculated. Comparison of index values and analysis of their correlation with clinical indicators, such as age, systolic blood pressure, diastolic blood pressure, pulse pressure (PP), body mass index and heart rate (HR), were carried out using simple and multiple linear regression, dispersion analysis, calculation of the Pearson coefficient (r), in the software environment R version 4.0.2.Results. Statistical analysis revealed a high correlation between START and CAVI indices (r=0,986, p<0,001). The values of both indices increase significantly with age (ANOVA p><0,001). Both START and CAVI correlate with all studied clinical parameters. However, in men, there was no relationship of the indices with PP and HR (p>0,05). According to multiple linear regression, the relationship between diastolic blood pressure at the age of 30-60 years and PP at the age of 18-40 years with the START index is more pronounced than with the CAVI index. However, further study of the mathematical model did not reveal a significant difference in the index values for groups with and without high blood pressure.Conclusion. The START vascular stiffness index significantly correlates with the CAVI index, showing no significant differences from CAVI in quantitative relationships with blood pressure, body mass index, heart rate, and sex in various subgroups of the subjects
Design, Performance and Calibration of the CMS Forward Calorimeter Wedges
We report on the test beam results and calibration methods using charged particles of the CMS Forward Calorimeter (HF). The HF calorimeter covers a large pseudorapidity region (3\l |\eta| \le 5), and is essential for large number of physics channels with missing transverse energy. It is also expected to play a prominent role in the measurement of forward tagging jets in weak boson fusion channels. The HF calorimeter is based on steel absorber with embedded fused-silica-core optical fibers where Cherenkov radiation forms the basis of signal generation. Thus, the detector is essentially sensitive only to the electromagnetic shower core and is highly non-compensating (e/h \approx 5). This feature is also manifest in narrow and relatively short showers compared to similar calorimeters based on ionization. The choice of fused-silica optical fibers as active material is dictated by its exceptional radiation hardness. The electromagnetic energy resolution is dominated by photoelectron statistics and can be expressed in the customary form as a/\sqrt{E} + b. The stochastic term a is 198% and the constant term b is 9%. The hadronic energy resolution is largely determined by the fluctuations in the neutral pion production in showers, and when it is expressed as in the electromagnetic case, a = 280% and b = 11%
Design, Performance, and Calibration of CMS Hadron-Barrel Calorimeter Wedges
Extensive measurements have been made with pions, electrons and muons on four production wedges of the Compact Muon Solenoid (CMS) hadron barrel (HB) calorimeter in the H2 beam line at CERN with particle momenta varying from 20 to 300 GeV/c. Data were taken both with and without a prototype electromagnetic lead tungstate crystal calorimeter (EB) in front of the hadron calorimeter. The time structure of the events was measured with the full chain of preproduction front-end electronics running at 34 MHz. Moving-wire radioactive source data were also collected for all scintillator layers in the HB. These measurements set the absolute calibration of the HB prior to first pp collisions to approximately 4%
Design, Performance, and Calibration of CMS Hadron Endcap Calorimeters
Detailed measurements have been made with the CMS hadron calorimeter endcaps (HE) in response to beams of muons, electrons, and pions. Readout of HE with custom electronics and hybrid photodiodes (HPDs) shows no change of performance compared to readout with commercial electronics and photomultipliers. When combined with lead-tungstenate crystals, an energy resolution of 8\% is achieved with 300 GeV/c pions. A laser calibration system is used to set the timing and monitor operation of the complete electronics chain. Data taken with radioactive sources in comparison with test beam pions provides an absolute initial calibration of HE to approximately 4\% to 5\%
Energy Response and Longitudinal Shower Profiles Measured in CMS HCAL and Comparison With Geant4
The response of the CMS combined electromagnetic and hadron calorimeter to beams of pions with momenta in the range 5-300 GeV/c has been measured in the H2 test beam at CERN. The raw response with the electromagnetic compartment calibrated to electrons and the hadron compartment calibrated to 300 GeV pions may be represented by sigma = (1.2) sqrt{E} oplus (0.095) E. The fraction of energy visible in the calorimeter ranges from 0.72 at 5 GeV to 0.95 at 300 GeV, indicating a substantial nonlinearity. The intrinsic electron to hadron ratios are fit as a function of energy and found to be in the range 1.3-2.7 for the electromagnetic compartment and 1.4-1.8 for the hadronic compartment. The fits are used to correct the non-linearity of the e pi response to 5% over the entire measured range resulting in a substantially improved resolution at low energy. Longitudinal shower profile have been measured in detail and compared to Geant4 models, LHEP-3.7 and QGSP-2.8. At energies below 30 GeV, the data, LHEP and QGSP are in agreement. Above 30 GeV, LHEP gives a more accurate simulation of the longitudinal shower profile
Synchronization and Timing in CMS HCAL
The synchronization and timing of the hadron calorimeter (HCAL) for the Compact Muon Solenoid has been extensively studied with test beams at CERN during the period 2003-4, including runs with 40 MHz structured beam. The relative phases of the signals from different calorimeter segments are timed to 1 ns accuracy using a laser and equalized using programmable delay settings in the front-end electronics. The beam was used to verify the timing and to map out the entire range of pulse shapes over the 25 ns interval between beam crossings. These data were used to make detailed measurements of energy-dependent time slewing effects and to tune the electronics for optimal performance
- …