759 research outputs found
Electron cyclotron resonance near the axis of the gas-dynamic trap
Propagation of an extraordinary electromagnetic wave in the vicinity of
electron cyclotron resonance surface in an open linear trap is studied
analytically, taking into account inhomogeneity of the magnetic field in
paraxial approximation. Ray trajectories are derived from a reduced dispersion
equation that makes it possible to avoid the difficulty associated with a
transition from large propagation angles to the case of strictly longitudinal
propagation. Our approach is based on the theory, originally developed by the
Zvonkov and Timofeev [1], who used the paraxial approximation for the magnetic
field strength, but did not consider the slope of the magnetic field lines,
which led to considerable error, as has been recently noted by Gospodchikov and
Smolyakova [2]. We have found ray trajectories in analytic form and
demonstrated that the inhomogeneity of both the magnetic field strength and the
field direction can qualitatively change the picture of wave propagation and
significantly affect the efficiency of electron cyclotron heating of a plasma
in a linear magnetic trap. Analysis of the ray trajectories has revealed a
criterion for the resonance point on the axis of the trap to be an attractor
for the ray trajectories. It is also shown that a family of ray trajectories
can still reach the resonance point on the axis if the latter generally repels
the ray trajectories.
As an example, results of general theory are applied to the electron
cyclotron resonance heating experiment which is under preparation on the Gas
Dynamic Trap in the Budker Institute of Nuclear Physics [3]
Nonlinear dispersion of stationary waves in collisionless plasmas
A nonlinear dispersion of a general stationary wave in collisionless plasma
is obtained in a non-differential form from a single-particle
oscillation-center Hamiltonian. For electrostatic oscillations in nonmagnetized
plasma, considered as a paradigmatic example, the linear dielectric function is
generalized, and the trapped particle contribution to the wave frequency shift
is found analytically as a function of the wave amplitude .
Smooth distributions yield , as usual. However,
beam-like distributions of trapped electrons result in different power laws, or
even a logarithmic nonlinearity, which are derived as asymptotic limits of the
same dispersion relation
Adiabatic nonlinear waves with trapped particles: II. Wave dispersion
A general nonlinear dispersion relation is derived in a nondifferential form
for an adiabatic sinusoidal Langmuir wave in collisionless plasma, allowing for
an arbitrary distribution of trapped electrons. The linear dielectric function
is generalized, and the nonlinear kinetic frequency shift is
found analytically as a function of the wave amplitude . Smooth
distributions yield , as usual. However,
beam-like distributions of trapped electrons result in different power laws, or
even a logarithmic nonlinearity, which are derived as asymptotic limits of the
same dispersion relation. Such beams are formed whenever the phase velocity
changes, because the trapped distribution is in autoresonance and thus evolves
differently from the passing distribution. Hence, even adiabatic is generally nonlocal.Comment: submitted together with Papers I and II
Single-shot single-gate RF spin readout in silicon
For solid-state spin qubits, single-gate RF readout can help minimise the
number of gates required for scale-up to many qubits since the readout sensor
can integrate into the existing gates required to manipulate the qubits
(Veldhorst 2017, Pakkiam 2018). However, a key requirement for a scalable
quantum computer is that we must be capable of resolving the qubit state within
single-shot, that is, a single measurement (DiVincenzo 2000). Here we
demonstrate single-gate, single-shot readout of a singlet-triplet spin state in
silicon, with an average readout fidelity of at a
measurement bandwidth. We use this technique to measure a triplet to
singlet relaxation time of in precision donor quantum
dots in silicon. We also show that the use of RF readout does not impact the
maximum readout time at zero detuning limited by the to decay,
which remained at approximately . This establishes single-gate
sensing as a viable readout method for spin qubits
Wideband Detection of the Third Moment of Shot Noise by a Hysteretic Josephson Junction
We use a hysteretic Josephson junction as an C of the third moment of shot noise of a tunnel junction. The detectable bandwidth is determined by the plasma frequency of the detector, which is about 50 GHz in the present experiment. The third moment of shot noise results in a measurable change of the switching rate when reversing polarity of the current through the noise source. We analyze the observed asymmetry assuming adiabatic response of the detector.Peer reviewe
Brownian refrigeration by hybrid tunnel junctions
Voltage fluctuations generated in a hot resistor can cause extraction of heat
from a colder normal metal electrode of a hybrid tunnel junction between a
normal metal and a superconductor. We extend the analysis presented in [Phys.
Rev. Lett. 98, 210604 (2007)] of this heat rectifying system, bearing
resemblance to a Maxwell's demon. Explicit analytic calculations show that the
entropy of the total system is always increasing. We then consider a single
electron transistor configuration with two hybrid junctions in series, and show
how the cooling is influenced by charging effects. We analyze also the cooling
effect from nonequilibrium fluctuations instead of thermal noise, focusing on
the shot noise generated in another tunnel junction. We conclude by discussing
limitations for an experimental observation of the effect.Comment: 16 pages, 16 figure
Guided random walk calculation of energies and <\sq {r^2} > values of the state of H_2 in a magnetic field
Energies and spatial observables for the state of the hydrogen
molecule in magnetic fields parallel to the proton-proton axis are calculated
with a guided random walk Feynman-Kac algorithm. We demonstrate that the
accuracy of the results and the simplicity of the method may prove it a viable
alternative to large basis set expansions for small molecules in applied
fields.Comment: 10 pages, no figure
Inhomogeneous Quasi-stationary States in a Mean-field Model with Repulsive Cosine Interactions
The system of N particles moving on a circle and interacting via a global
repulsive cosine interaction is well known to display spatially inhomogeneous
structures of extraordinary stability starting from certain low energy initial
conditions. The object of this paper is to show in a detailed manner how these
structures arise and to explain their stability. By a convenient canonical
transformation we rewrite the Hamiltonian in such a way that fast and slow
variables are singled out and the canonical coordinates of a collective mode
are naturally introduced. If, initially, enough energy is put in this mode, its
decay can be extremely slow. However, both analytical arguments and numerical
simulations suggest that these structures eventually decay to the spatially
uniform equilibrium state, although this can happen on impressively long time
scales. Finally, we heuristically introduce a one-particle time dependent
Hamiltonian that well reproduces most of the observed phenomenology.Comment: to be published in J. Phys.
Pathology of the shoulder joint and soft tissues: clinical variants, current capabilities of pathogenesis-directed therapy
Pain syndrome in the shoulder occurs in every 5th adult and is the 2nd most frequent reason for seeking primary medical care among all musculoskeletal disorders. Group of local causes of pain syndrome in the shoulder area. The starting point for differential search is patient’s age. For persons younger than 40, the most common causes are joint instability (dislocations / subluxations), as well as mild damage of the rotator cuff muscles due to injury. Patients older than 40 have an increased risk of severe chronic disorders of the above-mentioned muscles, adhesive capsulitis, and osteoarthritis of the shoulder joint. Treatment of shoulder joint and soft tissue pathology is nosological in nature and has to be justified by pathogenesis. Chondroreparants are a new class of pharmaceuticals based on hyaluronic acid modified by low molecular weight compounds using solid-phase stabilization. During physical stabilization (mechanosynthesis) of hyaluronic acid, chemical crosslinkers are not used, which leads to high tolerability and safety. Modified hyaluronic acid in Hyalrepair formulas has a number of structural features leading to its slower biodegradation in the tissues. Chondroreparant Hyalrepair-10 consists of hyaluronic acid, ascorbyl phosphate, zinc, cysteine, and glutathione; Hyalrepair- 2 consists of hyaluronic acid, ascorbyl phosphate, L-proline, L-lysine, and glycine. Use of intra-joint and periarticular injection of hyaluronic acid can be an effective approach in combination pathogenesis-directed therapy of the shoulder and soft tissues
- …