1,072 research outputs found

    Microscopic model for Bose-Einstein condensation and quasiparticle decay

    Full text link
    Sufficiently dimerized quantum antiferromagnets display elementary S=1 excitations, triplon quasiparticles, protected by a gap at low energies. At higher energies, the triplons may decay into two or more triplons. A strong enough magnetic field induces Bose-Einstein condensation of triplons. For both phenomena the compound IPA-CuCl3 is an excellent model system. Nevertheless no quantitative model was determined so far despite numerous studies. Recent theoretical progress allows us to analyse data of inelastic neutron scattering (INS) and of magnetic susceptibility to determine the four magnetic couplings J1=-2.3meV, J2=1.2meV, J3=2.9meV and J4=-0.3meV. These couplings determine IPA-CuCl3 as system of coupled asymmetric S=1/2 Heisenberg ladders quantitatively. The magnetic field dependence of the lowest modes in the condensed phase as well as the temperature dependence of the gap without magnetic field corroborate this microscopic model.Comment: 6 pages, 5 figure

    Quantum corrections to the conductivity and Hall coefficient of a 2D electron gas in a dirty AlGaAs/GaAs/AlGaAs quantum well: transition from diffusive to ballistic regime

    Full text link
    We report an experimental study of the quantum corrections to the longitudinal conductivity and the Hall coefficient of a low mobility, high density two-dimensional two-dimensional electron gas in a AlGaAs/GaAs/AlGaAs quantum well in a wide temperature range (1.5 K - 110 K). This temperature range covers both the diffusive and the ballistic interaction regimes for our samples. It was therefore possible to study the crossover region for the longitudinal conductivity and the Hall effect

    Equal Time Correlations in Haldane Gap Antiferromagnets

    Full text link
    The S=1S=1 antiferromagnetic Heisenberg chain both with and without single ion anisotropy is studied. Using the recently proposed density matrix renormalization group technique we calculate the energy gaps as well as several different correlation functions. The two gaps, Δ,Δ\Delta_{||}, \Delta_\perp, along with associated correlation lengths and velocities are determined. The numerical results are shown to be in good agreement with theoretical predictions derived from the nonlinear sigma model and a free boson model. We also study the S=1/2S=1/2 excitations that occur at the ends of open chains; in particular we study the behavior associated with open boundary conditions, using a model of S=1/2S=1/2 spins coupled to the free bosons.Comment: 32 pages, uufiles encoded REVTEX 3.0, 19 postscript figures included, UBCTP-93-02

    The spin-Peierls instability in spin 1/2 XY chain in the non adiabatic limit

    Full text link
    The spin-Peierls instability in spin 1/2 XY chain coupled to dispersionless phonons of frequency ω\omega has been studied in the nonadiabatic limit. We have chosen the Lang-Firsov variational wave function for the phonon subsystem to obtain an effective spin Hamiltonian. The effective spin Hamiltonian is then solved in the framework of mean-field approximation. We observed a dimerized phase when g is less than a critical value and an anti-ferromagnetic phase when it is greater than a critical value . The variation of lattice distortion, dimerized order parameter and energy gap with spin phonon coupling parameter has also been investigated here.Comment: 15 pages (Revtex, including 5 .ps figures); Submitted to PR

    Magnetic properties of the spin-1 chain compound NiCl3_3C6_6H5_5CH2_2CH2_2NH3_3

    Get PDF
    We report experimental results of the static magnetization, ESR and NMR spectroscopic measurements of the Ni-hybrid compound NiCl3_3C6_6H5_5CH2_2CH2_2NH3_3. In this material NiCl3_3 octahedra are structurally arranged in chains along the crystallographic aa-axis. According to the static susceptibility and ESR data Ni2+^{2+} spins S=1S = 1 are isotropic and are coupled antiferromagnetically (AFM) along the chain with the exchange constant J=25.5J = 25.5 K. These are important prerequisites for the realization of the so-called Haldane spin-1 chain with the spin-singlet ground state and a quantum spin gap. However, experimental results evidence AFM order at TN10T_{\rm N} \approx 10 K presumably due to small interchain couplings. Interestingly, frequency-, magnetic field-, and temperature-dependent ESR measurements, as well as the NMR data, reveal signatures which could presumably indicate an inhomogeneous ground state of co-existent mesoscopically spatially separated AFM ordered and spin-singlet state regions similar to the situation observed before in some spin-diluted Haldane magnets

    Boundary-mediated electron-electron interactions in quantum point contacts

    Full text link
    An unusual increase of the conductance with temperature is observed in clean quantum point contacts for conductances larger than 2e^2/h. At the same time a positive magnetoresistance arises at high temperatures. A model accounting for electron-electron interactions mediated by bound- aries (scattering on Friedel oscillations) qualitatively describes the observation. It is supported by numerical simulation at zero magnetic field.Comment: To appear in Phys. Rev. Lett Updated version of Fig.

    S(k) for Haldane Gap Antiferromagnets: Large-scale Numerical Results vs. Field Theory and Experiment

    Full text link
    The structure function, S(k), for the s=1, Haldane gap antiferromagnetic chain, is measured accurately using the recent density matrix renormalization group method, with chain-length 100. Excellent agreement with the nonlinear σ\sigma model prediction is obtained, both at kπk\approx \pi where a single magnon process dominates and at k0k\approx 0 where a two magnon process dominates. We repeat our calculation with crystal field anisotropy chosen to model NENP, obtaining good agreement with both field theory predictions and recent experiments. Correlation lengths, gaps and velocities are determined for both polarizations.Comment: 11 pages, 3 postscript figures included, REVTEX 3.0, UBCTP-93-02

    Spin-Wave Description of Haldane-gap antiferromagnets

    Full text link
    Modifying the conventional antiferromagnetic spin-wave theory which is plagued by the difficulty of the zero-field sublattice magnetizations diverging in one dimension, we describe magnetic properties of Haldane-gap antiferromagnets. The modified spin waves, constituting a grand canonical bosonic ensemble so as to recover the sublattice symmetry, not only depict well the ground-state correlations but also give useful information on the finite-temperature properties.Comment: to be published in J. Phys. Soc. Jpn. Vol. 72, No. 4 (2003
    corecore