1,072 research outputs found
Microscopic model for Bose-Einstein condensation and quasiparticle decay
Sufficiently dimerized quantum antiferromagnets display elementary S=1
excitations, triplon quasiparticles, protected by a gap at low energies. At
higher energies, the triplons may decay into two or more triplons. A strong
enough magnetic field induces Bose-Einstein condensation of triplons. For both
phenomena the compound IPA-CuCl3 is an excellent model system. Nevertheless no
quantitative model was determined so far despite numerous studies. Recent
theoretical progress allows us to analyse data of inelastic neutron scattering
(INS) and of magnetic susceptibility to determine the four magnetic couplings
J1=-2.3meV, J2=1.2meV, J3=2.9meV and J4=-0.3meV. These couplings determine
IPA-CuCl3 as system of coupled asymmetric S=1/2 Heisenberg ladders
quantitatively. The magnetic field dependence of the lowest modes in the
condensed phase as well as the temperature dependence of the gap without
magnetic field corroborate this microscopic model.Comment: 6 pages, 5 figure
Quantum corrections to the conductivity and Hall coefficient of a 2D electron gas in a dirty AlGaAs/GaAs/AlGaAs quantum well: transition from diffusive to ballistic regime
We report an experimental study of the quantum corrections to the
longitudinal conductivity and the Hall coefficient of a low mobility, high
density two-dimensional two-dimensional electron gas in a AlGaAs/GaAs/AlGaAs
quantum well in a wide temperature range (1.5 K - 110 K). This temperature
range covers both the diffusive and the ballistic interaction regimes for our
samples. It was therefore possible to study the crossover region for the
longitudinal conductivity and the Hall effect
Equal Time Correlations in Haldane Gap Antiferromagnets
The antiferromagnetic Heisenberg chain both with and without single ion
anisotropy is studied. Using the recently proposed density matrix
renormalization group technique we calculate the energy gaps as well as several
different correlation functions. The two gaps, ,
along with associated correlation lengths and velocities are determined. The
numerical results are shown to be in good agreement with theoretical
predictions derived from the nonlinear sigma model and a free boson model. We
also study the excitations that occur at the ends of open chains; in
particular we study the behavior associated with open boundary conditions,
using a model of spins coupled to the free bosons.Comment: 32 pages, uufiles encoded REVTEX 3.0, 19 postscript figures included,
UBCTP-93-02
The spin-Peierls instability in spin 1/2 XY chain in the non adiabatic limit
The spin-Peierls instability in spin 1/2 XY chain coupled to dispersionless
phonons of frequency has been studied in the nonadiabatic limit. We
have chosen the Lang-Firsov variational wave function for the phonon subsystem
to obtain an effective spin Hamiltonian. The effective spin Hamiltonian is then
solved in the framework of mean-field approximation. We observed a dimerized
phase when g is less than a critical value and an anti-ferromagnetic phase when
it is greater than a critical value . The variation of lattice distortion,
dimerized order parameter and energy gap with spin phonon coupling parameter
has also been investigated here.Comment: 15 pages (Revtex, including 5 .ps figures); Submitted to PR
Magnetic properties of the spin-1 chain compound NiClCHCHCHNH
We report experimental results of the static magnetization, ESR and NMR
spectroscopic measurements of the Ni-hybrid compound
NiClCHCHCHNH. In this material NiCl octahedra are
structurally arranged in chains along the crystallographic -axis. According
to the static susceptibility and ESR data Ni spins are isotropic
and are coupled antiferromagnetically (AFM) along the chain with the exchange
constant K. These are important prerequisites for the realization of
the so-called Haldane spin-1 chain with the spin-singlet ground state and a
quantum spin gap. However, experimental results evidence AFM order at K presumably due to small interchain couplings. Interestingly,
frequency-, magnetic field-, and temperature-dependent ESR measurements, as
well as the NMR data, reveal signatures which could presumably indicate an
inhomogeneous ground state of co-existent mesoscopically spatially separated
AFM ordered and spin-singlet state regions similar to the situation observed
before in some spin-diluted Haldane magnets
Boundary-mediated electron-electron interactions in quantum point contacts
An unusual increase of the conductance with temperature is observed in clean
quantum point contacts for conductances larger than 2e^2/h. At the same time a
positive magnetoresistance arises at high temperatures. A model accounting for
electron-electron interactions mediated by bound- aries (scattering on Friedel
oscillations) qualitatively describes the observation. It is supported by
numerical simulation at zero magnetic field.Comment: To appear in Phys. Rev. Lett Updated version of Fig.
S(k) for Haldane Gap Antiferromagnets: Large-scale Numerical Results vs. Field Theory and Experiment
The structure function, S(k), for the s=1, Haldane gap antiferromagnetic
chain, is measured accurately using the recent density matrix renormalization
group method, with chain-length 100. Excellent agreement with the nonlinear
model prediction is obtained, both at where a single
magnon process dominates and at where a two magnon process
dominates. We repeat our calculation with crystal field anisotropy chosen to
model NENP, obtaining good agreement with both field theory predictions and
recent experiments. Correlation lengths, gaps and velocities are determined for
both polarizations.Comment: 11 pages, 3 postscript figures included, REVTEX 3.0, UBCTP-93-02
Spin-Wave Description of Haldane-gap antiferromagnets
Modifying the conventional antiferromagnetic spin-wave theory which is
plagued by the difficulty of the zero-field sublattice magnetizations diverging
in one dimension, we describe magnetic properties of Haldane-gap
antiferromagnets. The modified spin waves, constituting a grand canonical
bosonic ensemble so as to recover the sublattice symmetry, not only depict well
the ground-state correlations but also give useful information on the
finite-temperature properties.Comment: to be published in J. Phys. Soc. Jpn. Vol. 72, No. 4 (2003
- …