2 research outputs found

    On the entropy production of time series with unidirectional linearity

    Full text link
    There are non-Gaussian time series that admit a causal linear autoregressive moving average (ARMA) model when regressing the future on the past, but not when regressing the past on the future. The reason is that, in the latter case, the regression residuals are only uncorrelated but not statistically independent of the future. In previous work, we have experimentally verified that many empirical time series indeed show such a time inversion asymmetry. For various physical systems, it is known that time-inversion asymmetries are linked to the thermodynamic entropy production in non-equilibrium states. Here we show that such a link also exists for the above unidirectional linearity. We study the dynamical evolution of a physical toy system with linear coupling to an infinite environment and show that the linearity of the dynamics is inherited to the forward-time conditional probabilities, but not to the backward-time conditionals. The reason for this asymmetry between past and future is that the environment permanently provides particles that are in a product state before they interact with the system, but show statistical dependencies afterwards. From a coarse-grained perspective, the interaction thus generates entropy. We quantitatively relate the strength of the non-linearity of the backward conditionals to the minimal amount of entropy generation.Comment: 16 page
    corecore