24 research outputs found

    Static and dynamic structure factors with account of the ion structure for high-temperature alkali and alkaline earth plasmas

    Full text link
    The electron-electron, electron-ion, ion-ion and charge-charge static structure factors are calculated for alkali (at T = 30 000 K, 60 000 K, n (e) = 0.7 x 10(21) A center dot 1.1 x 10(22) cm(-3)) and Be2+ (at T = 20 eV, n (e) = 2.5 x 10(23) cm(-3)) plasmas using the method described by Gregori et al. The dynamic structure factors for alkali plasmas are calculated at T = 30 000 K, n (e) = 1.74 x 10(20), 1.11 x 10(22) cm(-3) using the method of moments developed by Adamjan et al. In both methods the screened Hellmann-Gurskii-Krasko potential, obtained on the basis of Bogolyubov's method, has been used taking into account not only the quantum-mechanical effects but also the repulsion due to the Pauli exclusion principle. The repulsive part of the Hellmann-Gurskii-Krasko (HGK) potential reflects important features of the ion structure. Our results on the static structure factors for Be2+ plasma deviate from the data obtained by Gregori et al., while our dynamic structure factors are in a reasonable agreement with those of Adamyan et al.: at higher values of k and with increasing k the curves damp down while at lower values of k, and especially at higher electron coupling, we observe sharp peaks also reported in the mentioned work. For lower electron coupling the dynamic structure factors of Li+, Na+, K+, Rb+ and Cs+ do not differ while at higher electron coupling these curves split. As the number of shell electrons increases from Li+ to Cs+ the curves shift in the direction of low absolute value of omega and their heights diminish. We conclude that the short range forces, which we take into account by means of the HGK model potential, which deviates from the Coulomb and Deutsch ones, influence the static and dynamic structure factors significantly.The work has been realised at the Humboldt University at Berlin (Germany). One of the authors (S. P. Sadykova) would like to express sincere thanks to the Erasmus Mundus Program of the EU for the financial support and especially to Mr. M. Parske for his aid, to the Institute of Physics, Humboldt University at Berlin, for the support which made her participation at some scientific Conferences possible; I. M. T. acknowledges the financial support of the Spanish Ministerio de Educacion y Ciencia Project No. ENE2007-67406-C02-02/FTN and valuable discussions with Dr. D. Gericke.Sadykova, SP.; Ebeling, W.; Tkachenko Gorski, IM. (2011). Static and dynamic structure factors with account of the ion structure for high-temperature alkali and alkaline earth plasmas. European Physical Journal D. 61(1):117-130. https://doi.org/10.1140/epjd/e2010-10118-yS117130611G. Gregori, O.L. Landen, S.H. Glenzer, Phys. Rev. E 74, 026402 (2006)G. Gregori, A. Ravasio, A. Höll, S.H. Glenzer, S.J. Rose, High Energy Density Physics 3, 99 (2007)V.M. Adamyan, I.M. Tkachenko, Teplofiz. Vys. Temp. 21, 417 (1983) [High Temp. (USA) 21, 307 (1983)]V.M. Adamyan, T. Meyer, I.M. Tkachenko, Fiz. Plazmy 11, 826 (1985) [Sov. J. Plasma Phys. 11, 481 (1985)]S.V. Adamjan, I.M. Tkachenko, J.L. Muñoz-Cobo, G. Verdú Martín, Phys. Rev. E 48, 2067 (1993)V.M. Adamyan, I.M. Tkachenko, Contrib. Plasma Phys. 43, 252 (2003)S. Sadykova, W. Ebeling, I. Valuev, I. Sokolov, Contrib. Plasma Phys. 49, 76 (2009)M.J. Rosseinsky, K. Prassides, Nature 464, 39 (2010)Physics and Chemistry of Alkali Metal Adsorption, edited by H.P. Bonzel, A.M. Bradshaw, G. Ertl (Elsevier, Amsterdam, 1989), Materials Science Monographs, Vol. 57A.N. Klyucharev, N.N. Bezuglov, A.A. Matveev, A.A. Mihajlov, Lj.M. Ignjatović, M.S. Dimitrijević, New Astron. Rev. 51, 547 (2007)F. Hensel, Liquid Metals, edited by R. Evans, D.A. Greenwood, IOP Conf. Ser. No. 30 (IPPS, London, 1977)F. Hensel, S. Juengst, F. Noll, R. Winter, In Localisation and Metal Insulator Transitions, edited by D. Adler, H. Fritsche (Plenum Press, New York, 1985)N.F. Mott, Metal-Insulator Transitions (Taylor and Francis, London, 1974)H. Hess, Physics of nonideal plasmas, edited by W. Ebeling, A. Foerster, R. Radtke, B.G. Teubner (Leipzig, 1992)V. Sizyuk, A. Hassanein, T. Sizyuk, J. Appl. Phys. 100, 103106 (2006)S. Sadykova, W. Ebeling, I. Valuev, I. Sokolov, Contrib. Plasma Phys. 49, 388 (2009)H. Ebert, Physikalisches Taschenbuch (F. Vieweg & Sohn, Braunschweig, 1967)S.H. Glenzer, G. Gregori, R.W. Lee, F.J. Rogers, S.W. Pollaine, O.L. Landen, Phys. Rev. Lett. 90, 175002 (2003)G. Gregori, S.H. Glenzer, H.-K. Chung, D.H. Froula, R.W. Lee, N.B. Meezan, J.D. Moody, C. Niemann, O.L. Landen, B. Holst, R. Redmer, S.P. Regan, H. Sawada, J. Quant. Spectrosc. Radiat. Transfer 99, 225237 (2006)D. Riley, N.C. Woolsey, D. McSherry, I. Weaver, A. Djaoui, E. Nardi, Phys. Rev. Lett. 84, 1704 (2000)S.H. Glenzer, Phys. Rev. Lett. 98, 065002 (2007)J. Sheffield, Plasma Scattering of Electromagnetic Radiation (Academic Press, New York, 1975)A. Höll, Th. Bornath, L. Cao, T. Döppner, S. Düsterer, E. Föster, C. Fortmann, S.H. Glenzer, G. Gregori, T. Laarmann, K.-H. Meiwes-Broer, A. Przystawik, P. Radcliffe, R. Redmer, H. Reinholz, G. Röpke, R. Thiele, J. Tiggesbäumker, S. Toleikis, N.X. Truong, T. Tschentscher, I. Ushmann, U. Zastrau, High Energy Density Phys. 3, 120 (2007)Yu.V. Arkhipov, A. Askaruly, D. Ballester, A.E. Davletov, G.M. Meirkhanova, I.M. Tkachenko, Phys. Rev. E 76, 026403 (2007)Yu.V. Arkhipov, A. Askaruly, D. Ballester, A.E. Davletov, I.M. Tkachenko, G. Zwicknagel, Phys. Rev. E 81, 026402 (2010)J.P. Hansen, I.R. Mc. Donald, Phys. Rev. A 23, 2041 (1981)J.P. Hansen, E.L. Polock, I.R. McDonald, Phys. Rev. Lett. 32, 277 (1974)V. Schwarz, B. Holst, T. Bornath, C. Fortmann, W-D. Kraeft, R. Thiele, R. Redmer, G. Gregori, H. Ja Leed, T. Döppner, S.H. Glenzer, High Energy Density Phys. 5, 1 (2009)D.O. Gericke, K. Wünsch, J. Vorberger, Nucl. Instrum. Methods Phys. Res. A 606, 142 (2009)B. Bernu, D. Ceperley, Quantum Monte Carlo Methods in Physics and Chemistry, edited by M.P. Nightingale, C. Umrigar (Kluwer Academic Publishers, Boston, 1999), NATO ASI Series, Series C, Mathematical and Physical Sciences, Vol. C-525G. Kelbg, Ann. Physik 13 354 (1964)C. Deutsch, Phys. Lett. A 60, 317 (1977)H. Minoo, M.M. Gombert, C. Deutsch, Phys. Rev. A 23, 924 (1981)W. Ebeling, G.E. Norman, A.A. Valuev, I. Valuev, Contrib. Plasma Phys. 39, 61 (1999)A.V. Filinov, M. Bonitz, W. Ebeling, J. Phys. A. 36, 5957 (2003)H. Hellmann, J. Chem. Phys. 3, 61 (1935)H. Hellmann, Acta Fizicochem. USSR 1, 913 (1935)H. Hellmann, Acta Fizicochem. USSR 4, 225 (1936)H. Hellmann, W. Kassatotschkin, Acta Fizicochem. USSR 5, 23 (1936)W.A. Harrison, Pseudopotentials in the Theory of Metals (Benjamin, New York, 1966)V. Heine, M.L. Cohen, D. Weaire, Psevdopotenzcial'naya Teoriya (Mir, Moskva, 1973)V. Heine, The pseudopotential concept, edited by H. Ehrenreich, F. Seitz, D. Turnbull, Solid State Physics 24, 1 (Academic, New York 1970)G.L. Krasko, Z.A. Gurskii, JETP Lett. 9, 363 (1969)W. Ebeling, W.-D. Kraeft, D. Kremp, Theory of Bound State and Ionization Equilibrium in Plasmas and Solids (Akademie-Verlag, Berlin, 1976)W. Zimdahl, W. Ebeling, Ann. Phys. (Leipzig) 34, 9 (1977)W. Ebeling, C.-V. Meister, R. Saendig, 13 ICPIG (Berlin, 1977) 725W. Ebeling, C.V. Meister, R. Saendig, W.-D. Kraeft, Ann. Phys. 491, 321 (1979)N.N. Bogolyubov, Dynamical Theory Problems in Statistical Physics (in Russian) (GITTL, Moscow, 1946)N.N. Bogolyubov, Studies in Statistical Mechanics, Engl. Transl., edited by J. De Boer, G.E. Uhlenbeck (North-Holland, Amsterdam, 1962)H. Falkenhagen, Theorie der Elektrolyte (S. Hirzel Verlag, Leipzig, 1971), p. 369Yu.V. Arkhipov, F.B. Baimbetov, A.E. Davletov, Eur. Phys. J. D 8, 299 (2000)P. Seuferling, J. Vogel, C. Toepffer, Phys. Rev. A 40, 323 (1989)L. Szasz, Pseudopotential Theory of Atoms and Molecules (Wiley-Intersc., New York, 1985)W.H.E. Schwarz, Acta Phys. Hung. 27, 391 (1969)W.H.E. Schwarz, Theor. Chim. Acta 11, 307 (1968)N.P. Kovalenko, Yu.P. Krasnyj, U. Krey, Physics of Amorphous Metalls (Wiley-VCH, Weinheim, 2001)Z.A. Gurski, G.L. Krasko, Doklady Akademii Nauk SSSR (in Russian) 197, 810 (1971)C. Fiolhais, J.P. Perdew, S.Q. Armster, J.M. MacLaren, Phys. Rev. B 51, 14001 (1995)S.S. Dalgic, S. Dalgic, G. Tezgor, Phys. Chem. Liq. 40, 539, (2002)E.M. Apfelbaum, Phys. Chem. Liq., 48, 534 (2010)Yu.V. Arkhipov, A.E. Davletov, Phys. Lett. A 247, 339 (1998)W. Ebeling, J. Ortner, Physica Scripta T 75, 93 (1998)J. Ortner, F. Schautz, W. Ebeling, Phys. Rev. E 56, 4665 (1997)N.I. Akhieser, The classical Moment Problem (Oliver and Boyd, London, 1965)M.G. Krein, A.A. Nudel'man, The Markov Moment Problem and External Problems (American Mathematical Society, Translations, New York, 1977)M.J. Corbatón, I.M. Tkachenko, Int. Conference on Strongly Coupled Coulomb Systems (SCCS2008), Camerino, Italy, July-August, 2008, Book of Abstracts, p. 90V.M. Adamyan, A.A. Mihajlov, N.M. Sakan, V.A. Srećković, I.M. Tkachenko, J. Phys. A: Math. Theor. 42, 214005 (2009)S. Ichimaru, Statistical Plasma Physics, Vol. I: Basic Principles (Addison-Wesley, Redwood City, 1992)W. Ebeling, A. Foerster, W. Richert, H. Hess, Physics A 150, 159 (1988)H. Wagenknecht, W. Ebeling, A. Förster, Contrib. Plasma Phys. 41, 15 (2001

    Overview of physics results from NSTX

    Full text link

    Extreme Conditions for Plasma-Facing Components in Tokamak Fusion Devices

    No full text
    Abstract-Safe and reliable operation is still one of the major challenges in the development of fusion energy. In magnetic fusion devices, perfect plasma confinement is difficult to achieve. During transient loss of plasma confinement, high plasma power and particle beams (power densities up to hundreds of gigawatts per square meter in time duration on the order of milliseconds) strike the reactor walls, particularly the divertor plate, and can significantly damage the exposed surfaces and also indirectly damage nearby components. To predict the resulting damage of the direct plasma impact on the divertor plate, comprehensive multiphysics multiphase models are developed, integrated, and implemented in the High Energy Interaction with General Heterogeneous Target Systems computer simulation package. The evolution of the divertor material, resulting vaporization, heating and ionization of vapor plasma to higher temperatures, and, consequently, the resulting photon radiation, transport, and deposition around the divertor area are calculated for typical instability parameters of the edge-localized modes and disruption for an ITER-like geometry. Index Terms-Computer simulation, plasma density, plasma temperature, radiation effects, reactor design, Tokamak devices. W E SIMULATED the evolution of an edge-localized mode (ELM) plasma impact onto the divertor surface of an ITER-like geometry with strong and inclined magnetic field configuration using the High Energy Interaction with General Heterogeneous Target Systems (HEIGHTS) computer simulation package with extensive integrated models [1]- We studied the effect of ELMs on the divertor plate with different durations of 1, 0.5, and 0.1 ms. The ELM durations of 0.5 and 1 ms correspond to deposition powers of 0.92 MW/cm 2 and 0.46 MW/cm 2 , respectively. The shorter ELM initiates intense surface vaporization. The produced plasma cloud has a high temperature (up to 60 eV) and is very effective in forming a stable vapor/plasma shielding for the ELM incoming particles because of the insufficient time for vapor MHD motion and expansion/transport. The plasma shielding layer acts as an absorption layer for the rest of the ELM impact near the strike point location. The ELM particles decelerate, scatter, and deviate from the initial impinging direction in the plasma cloud that results in a significant decrease in erosion depth directly at the strike point and to a broadening of the whole erosion area. Because the plasma cloud is located near the strike point and relatively in confined position, the processes of plasma radiation and transport are evolved in this confined area around the divertor strike point but relatively far from nearby components. The impact ELM energy is consumed mostly for vaporization because of insufficient time for thermal relaxation and heat conduction inside the divertor plate. The MHD role and the expansion of the evolved vapor plasma increase appreciably with ELM impact duration. The plasma cloud has sufficient time for motion and expansion in the dome area [see We calculated the incident photon fluxes along the dump and dome surfaces using our Monte Carlo radiation transport model implemented in HEIGHTS. For the same impact of total ELM energy of 12.6 MJ, higher radiation deposition was predicted for the longer impact duration of 1.0 ms. The maximum energy deposited reaches values up to 40 J/cm 2 . These values are 0093-3813/$26.0
    corecore