5,059 research outputs found

    The effect of the common bond and membership expansion on credit union risk

    Get PDF
    This paper examines differences in institutional risk profiles based on credit union membership type and membership expansion via “select employee groups,” or SEGs, which are now expressly allowed by the Credit Union Membership Access Act of 1998. A cross-sectional statistical model is specified that examines risk variation relative to the type of common bond and the breadth of the credit union’s membership. In findings that are consistent with earlier research, the authors document that occupationally based credit unions have a unique risk profile relative to other common bonds. This profile includes a greater exposure to concentration risk, which is hedged by holding greater proportions of capital. ; The authors also examine the subsample of Single-Bond occupational credit unions and those Multi-Bond credit unions with primarily occupational group members. They find that the presence of SEGs is negatively related to capital ratios and positively related to loan-to-share ratios relative to the Single-Bond occupational credit unions. The use of survey data documenting the number of SEGs confirms that, as more SEGs are added, credit unions tend to increase their loan-to-share ratios and decrease their capital ratios. However, the number of SEGs and the proportion of loan delinquencies are found to be positively related, suggesting that the informational advantages associated with the common bond become diluted as new groups are added. Overall, the authors conclude that there are material benefits of credit union membership diversification and that these benefits derive from expanded investment opportunities and reduced concentration risk.Credit unions ; Risk

    Evaluating the climate effects of mid-1800s deforestation in New England, USA, using a Weather, Research, and Forecasting (WRF) Model Multi-Physics Ensemble

    Get PDF
    The New England region of the northeastern United States has a land use history characterized by forest clearing for agriculture and other uses during European colonization and subsequent reforestation following widespread farm abandonment. Despite these broad changes, the potential influence on local and regional climate has received relatively little attention. This study investigated wintertime (December through March) climate impacts of reforestation in New England using a high-resolution (4 km) multiphysics ensemble of the Weather Research and Forecasting Model. In general, the conversion from mid-1800s cropland/grassland to forest led to warming, but results were sensitive to physics parameterizations. The 2-m maximum temperature (T2max) was most sensitive to choice of land surface model, 2-m minimum temperature (T2min) was sensitive to radiation scheme, and all ensemble members simulated precipitation poorly. Reforestation experiments suggest that conversion of mid-1800s cropland/grassland to present-day forest warmed T2max +0.5 to +3 K, with weaker warming during a warm, dry winter compared to a cold, snowy winter. Warmer T2max over forests was primarily the result of increased absorbed shortwave radiation and increased sensible heat flux compared to cropland/grassland. At night, T2min warmed +0.2 to +1.5 K where deciduous broadleaf forest replaced cropland/grassland, a result of decreased ground heat flux. By contrast, T2min of evergreen needleleaf forest cooled –0.5 to –2.1 K, primarily owing to increased ground heat flux and decreased sensible heat flux

    The role of surface roughness, albedo, and Bowen ratio on ecosystem energy balance in the Eastern United States

    Get PDF
    Land cover and land use influence surface climate through differences in biophysical surface properties, including partitioning of sensible and latent heat (e.g., Bowen ratio), surface roughness, and albedo. Clusters of closely spaced eddy covariance towers (e.g., \u3c10 \u3ekm) over a variety of land cover and land use types provide a unique opportunity to study the local effects of land cover and land use on surface temperature. We assess contributions albedo, energy redistribution due to differences in surface roughness and energy redistribution due to differences in the Bowen ratio using two eddy covariance tower clusters and the coupled (land-atmosphere) Variable-Resolution Community Earth System Model. Results suggest that surface roughness is the dominant biophysical factor contributing to differences in surface temperature between forested and deforested lands. Surface temperature of open land is cooler (−4.8 °C to −0.05 °C) than forest at night and warmer (+0.16 °C to +8.2 °C) during the day at northern and southern tower clusters throughout the year, consistent with modeled calculations. At annual timescales, the biophysical contributions of albedo and Bowen ratio have a negligible impact on surface temperature, however the higher albedo of snow-covered open land compared to forest leads to cooler winter surface temperatures over open lands (−0.4 °C to −0.8 °C). In both the models and observation, the difference in mid-day surface temperature calculated from the sum of the individual biophysical factors is greater than the difference in surface temperature calculated from radiative temperature and potential temperature. Differences in measured and modeled air temperature at the blending height, assumptions about independence of biophysical factors, and model biases in surface energy fluxes may contribute to daytime biases

    Inflation without Inflaton(s)

    Get PDF
    We propose a model for early universe cosmology without the need for fundamental scalar fields. Cosmic acceleration and phenomenologically viable reheating of the universe results from a series of energy transitions, where during each transition vacuum energy is converted to thermal radiation. We show that this `cascading universe' can lead to successful generation of adiabatic density fluctuations and an observable gravity wave spectrum in some cases, where in the simplest case it reproduces a spectrum similar to slow-roll models of inflation. We also find the model provides a reasonable reheating temperature after inflation ends. This type of model may also be relevant for addressing the smallness of the vacuum energy today.Comment: 13 pages, 4 figures, published versio

    X-Ray flares in Orion Young Stars. II. Flares, Magnetospheres, and Protoplanetary Disks

    Full text link
    We study the properties of powerful X-ray flares from 161 pre-main sequence (PMS) stars observed with the Chandra X-ray Observatory in the Orion Nebula region. Relationships between flare properties, protoplanetary disks and accretion are examined in detail to test models of star-disk interactions at the inner edge of the accretion disks. Previous studies had found no differences in flaring between diskfree and accreting systems other than a small overall diminution of X-ray luminosity in accreting systems. The most important finding is that X-ray coronal extents in fast-rotating diskfree stars can significantly exceed the Keplerian corotation radius, whereas X-ray loop sizes in disky and accreting systems do not exceed the corotation radius. This is consistent with models of star-disk magnetic interaction where the inner disk truncates and confines the PMS stellar magnetosphere. We also find two differences between flares in accreting and diskfree PMS stars. First, a subclass of super-hot flares with peak plasma temperatures exceeding 100 MK are preferentially present in accreting systems. Second, we tentatively find that accreting stars produce flares with shorter durations. Both results may be consequences of the distortion and destabilization of the stellar magnetosphere by the interacting disk. Finally, we find no evidence that any flare types, even slow-rise flat-top flares are produced in star-disk magnetic loops. All are consistent with enhanced solar long-duration events with both footprints anchored in the stellar surface.Comment: Accepted for publication in ApJ (07/17/08); 46 pages, 14 figures, 2 table

    The soil and plant biogeochemistry sampling design for The National Ecological Observatory Network

    Get PDF
    Human impacts on biogeochemical cycles are evident around the world, from changes to forest structure and function due to atmospheric deposition, to eutrophication of surface waters from agricultural effluent, and increasing concentrations of carbon dioxide (CO2) in the atmosphere. The National Ecological Observatory Network (NEON) will contribute to understanding human effects on biogeochemical cycles from local to continental scales. The broad NEON biogeochemistry measurement design focuses on measuring atmospheric deposition of reactive mineral compounds and CO2 fluxes, ecosystem carbon (C) and nutrient stocks, and surface water chemistry across 20 eco‐climatic domains within the United States for 30 yr. Herein, we present the rationale and plan for the ground‐based measurements of C and nutrients in soils and plants based on overarching or “high‐level” requirements agreed upon by the National Science Foundation and NEON. The resulting design incorporates early recommendations by expert review teams, as well as recent input from the larger natural sciences community that went into the formation and interpretation of the requirements, respectively. NEON\u27s efforts will focus on a suite of data streams that will enable end‐users to study and predict changes to biogeochemical cycling and transfers within and across air, land, and water systems at regional to continental scales. At each NEON site, there will be an initial, one‐time effort to survey soil properties to 1 m (including soil texture, bulk density, pH, baseline chemistry) and vegetation community structure and diversity. A sampling program will follow, focused on capturing long‐term trends in soil C, nitrogen (N), and sulfur stocks, isotopic composition (of C and N), soil N transformation rates, phosphorus pools, and plant tissue chemistry and isotopic composition (of C and N). To this end, NEON will conduct extensive measurements of soils and plants within stratified random plots distributed across each site. The resulting data will be a new resource for members of the scientific community interested in addressing questions about long‐term changes in continental‐scale biogeochemical cycles, and is predicted to inspire further process‐based research
    • 

    corecore