1,274 research outputs found

    Fluctuations in mixtures of lamellar- and nonlamellar-forming lipids

    Full text link
    We consider the role of nonlamellar-forming lipids in biological membranes by examining fluctuations, within the random phase approximation, of a model mixture of two lipids, one of which forms lamellar phases while the other forms inverted hexagonal phases. To determine the extent to which nonlamellar-forming lipids facilitiate the formation of nonlamellar structures in lipid mixtures, we examine the fluctuation modes and various correlation functions in the lamellar phase of the mixture. To highlight the role fluctuations can play, we focus on the lamellar phase near its limit of stability. Our results indicate that in the initial stages of the transition, undulations appear in the lamellae occupied by the tails, and that the nonlamellar-forming lipid dominates these undulations. The lamellae occupied by the head groups pinch off to make the tubes of the hexagonal phase. Examination of different correlations and susceptibilities makes quantitative the dominant role of the nonlamellar-forming lipids.Comment: 7 figures (better but larger in byte figures are available upon resuest), submitte

    New mechanism of membrane fusion

    Full text link
    We have carried out Monte Carlo simulation of the fusion of bilayers of single chain amphiphiles which show phase behavior similar to that of biological lipids. The fusion mechanism we observe is very different from the ``stalk'' hypothesis. Stalks do form on the first stage of fusion, but they do not grow radially to form a hemifused state. Instead, stalk formation destabilizes the membranes and results in hole formation in the vicinity of the stalks. When holes in each bilayer nucleate spontaneously next to the same stalk, an incomplete fusion pore is formed. The fusion process is completed by propagation of the initial connection, the stalk, along the edges of the aligned holes.Comment: 4 pages, 3 figure

    Book Review. - Literatur

    Get PDF
    Book Review. - Literatu

    The RSV and the Small Catechism

    Get PDF
    In the theological literature of The Lutheran Church-Missouri Synod it has been the practice to quote Scripture passages in English in the form in which they appear in the King James Version of 1611. The revision of 1881-1885 and the revision of 1901 in no way affected this custom. Neither achieved any great measure of popularity. The situation appears to be somewhat different in the case of the Holy Bible, Revised Standard Version, which appeared upon the market in 1952 under copyright of the Division of Christian Education of the National Council of the Churches of Christ in the United States of America. A large number of copies of this Bible in modern English have already been sold and are apparently being widely read. Several church bodies have officially approved the use of this new version in their services and in Sunday schools

    Book Review. - Literatur

    Get PDF
    Book Review. - Literatu

    Book Review. - Literatur

    Get PDF
    Book Review. - Literatu

    The Holy Bible, Revised Standard Version

    Get PDF
    In the fall of 1952 Thomas Nelson and Sons placed on the market the Revised Standard Version of the complete Holy Bible. The New Testament section remains substantially the same as the one which already appeared in 1946, but a few changes of a lesser import were given room when this text was issued in combination with the Old Testament translation. The latter, however, is new and represents the results of years of intensive research by the Revision Committee

    The strong Novikov conjecture for low degree cohomology

    Get PDF
    We show that for each discrete group G, the rational assembly map K_*(BG) \otimes Q \to K_*(C*_{max} G) \otimes \Q is injective on classes dual to the subring generated by cohomology classes of degree at most 2 (identifying rational K-homology and homology via the Chern character). Our result implies homotopy invariance of higher signatures associated to these cohomology classes. This consequence was first established by Connes-Gromov-Moscovici and Mathai. Our approach is based on the construction of flat twisting bundles out of sequences of almost flat bundles as first described in our previous work. In contrast to the argument of Mathai, our approach is independent of (and indeed gives a new proof of) the result of Hilsum-Skandalis on the homotopy invariance of the index of the signature operator twisted with bundles of small curvature.Comment: 11 page

    Distribution of lipids in non-lamellar phases of their mixtures

    Full text link
    We consider a model of lipids in which a head group, characterized by its volume, is attached to two flexible tails of equal length. The phase diagram of the anhydrous lipid is obtained within self-consistent field theory, and displays, as a function of lipid architecture, a progression of phases: body-centered cubic, hexagonal, gyroid, and lamellar. We then examine mixtures of an inverted hexagonal forming lipid and a lamellar forming lipid. As the volume fractions of the two lipids vary, we find that inverted hexagonal, gyroid, or lamellar phases are formed. We demonstrate that the non-lamellar forming lipid is found preferentially at locations which are difficult for the lipid tails to reach. Variations in the volume fraction of each type of lipid tail are on the order of one to ten per cent within regions dominated by the tails. We also show that the variation in volume fraction is correlated qualitatively with the variation in mean curvature of the head-tail interface.Comment: 10 pages, 12 figures (better figures are available upon request), to appear in J. Chem. Phy

    Nudged Elastic Band calculation of the binding potential for liquids at interfaces

    Get PDF
    The wetting behavior of a liquid on solid substrates is governed by the nature of the effective interaction between the liquid-gas and the solid-liquid interfaces, which is described by the binding or wetting potential g(h)g(h) which is an excess free energy per unit area that depends on the liquid film height hh. Given a microscopic theory for the liquid, to determine g(h)g(h) one must calculate the free energy for liquid films of any given value of hh; i.e. one needs to create and analyze out-of-equilibrium states, since at equilibrium there is a unique value of hh, specified by the temperature and chemical potential of the surrounding gas. Here we introduce a Nudged Elastic Band (NEB) approach to calculate g(h)g(h) and illustrate the method by applying it in conjunction with a microscopic lattice density functional theory for the liquid. We show too that the NEB results are identical to those obtained with an established method based on using a fictitious additional potential to stabilize the non-equilibrium states. The advantages of the NEB approach are discussed.Comment: 5 pages, 2 figure
    • …
    corecore