82 research outputs found

    Quantum Spin Hall Effect and Enhanced Magnetic Response by Spin-Orbit Coupling

    Full text link
    We show that the spin Hall conductivity in insulators is related with a magnetic susceptibility representing the strength of the spin-orbit coupling. We use this relationship as a guiding principle to search real materials showing quantum spin Hall effect. As a result, we theoretically predict that bismuth will show the quantum spin Hall effect, both by calculating the helical edge states, and by showing the non-triviality of the Z_2 topological number, and propose possible experiments.Comment: 5 pages, 2 figures, accepted for publication in Phys. Rev. Let

    Phase Diagrams of Bi1-xSbx Thin Films with Different Growth Orientations

    Full text link
    A closed-form model is developed to evaluate the band-edge shift caused by quantum confinement for a two-dimensional non-parabolic carrier-pocket. Based on this model, the symmetries and the band-shifts of different carrier-pockets are evaluated for BiSb thin films that are grown along different crystalline axes. The phase diagrams for the BiSb thin film systems with different growth orientations are calculated and analyzed

    Bi(111) thin film with insulating interior but metallic surfaces

    Full text link
    The electrical conductance of molecular beam epitaxial Bi on BaF2(111) was measured as a function of both film thickness (4-540 nm) and temperature (5-300 K). Unlike bulk Bi as a prototype semimetal, the Bi thin films up to 90 nm are found to be insulating in the interiors but metallic on the surfaces. This result has not only resolved unambiguously the long controversy about the existence of semimetal-semiconductor transition in Bi thin film but also provided a straightforward interpretation for the long-puzzled temperature dependence of the resistivity of Bi thin films, which in turn might suggest some potential applications in spintronics

    Mode Coupling in Quantized High Quality Films

    Get PDF
    The effect of coupling of quantized modes on transport and localization in ultrathin films with quantum size effect (QSE) is discussed. The emphasis is on comparison of films with Gaussian, exponential, and power-law long-range behavior of the correlation function of surface, thickness, or bulk fluctuations. For small-size inhomogeneities, the mode coupling is the same for inhomogeneities of all types and the transport coefficients behave in the same way. The mode coupling becomes extremely sensitive to the correlators for large-size inhomogeneities leading to the drastically distinct behavior of the transport coefficients. In high-quality films there is a noticeable difference between the QSE patterns for films with bulk and surface inhomogeneities which explains why the recently predicted new type of QSE with large oscillations of the transport coefficients can be observed mostly in films with surface-driven relaxation. In such films with surface-dominated scattering the higher modes contribute to the transport only as a result of opening of the corresponding mode coupling channels and appear one by one. Mode coupling also explains a much higher transport contribution from the higher modes than it is commonly believed. Possible correlations between the inhomogeneities from the opposite walls provide, because of their oscillating response to the mode quantum numbers, a unique insight into the mode coupling. The presence of inhomogeneities of several sizes leads not to a mechanical mixture of QSE patterns, but to the overall shifting and smoothing of the oscillations. The results can lead to new, non-destructive ways of analysis of the buried interfaces and to study of inhomogeneities on the scales which are inaccessible for scanning techniques

    Optical conductivity of metal nanofilms and nanowires: The rectangular-box model

    Full text link
    The conductivity tensor is introduced for the low-dimensional electron systems. Within the particle-in-a-box model and the diagonal response approximation, components of the conductivity tensor for a quasi-homogeneous ultrathin metal film and wire are calculated under the assumption d≅λFd\cong \lambda_{\rm F} (where dd is the characteristic small dimension of the system, λF\lambda_{\rm F} is the Fermi wavelength for bulk metal). We find the transmittance of ultrathin films and compare these results with available experimental data. The analytical estimations for the size dependence of the Fermi level are presented, and the oscillations of the Fermi energy in ultrathin films and wires are computed. Our results demonstrate the strong size and frequency dependences of the real and imaginary parts of the conductivity components in the infrared range. A sharp distinction of the results for Au and Pb is observed and explained by the difference in the relaxation time of these metals.Comment: 13 pages, 8 figure

    Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase

    Full text link
    Phase transitions between the quantum spin Hall and the insulator phases in three dimensions are studied. We find that in inversion-asymmetric systems there appears a gapless phase between the quantum spin Hall and insulator phases in three dimensions, which is in contrast with the two-dimensional case. Existence of this gapless phase stems from a topological nature of gapless points (diabolical points) in three dimensions, but not in two dimensions.Comment: 16 pages, 5 figure

    Novel Edge Excitations of Two-dimensional Electron Liquid in a Magnetic Field

    Full text link
    We investigate the low-energy spectrum of excitations of a compressible electron liquid in a strong magnetic field. These excitations are localized at the periphery of the system. The analysis of a realistic model of a smooth edge yields new branches of acoustic excitation spectrum in addition to the well known edge magnetoplasmon mode. The velocities are found and the observability conditions are established for the new modes.Comment: 9 pages + 2 figures by request preprint TPI-MINN-93/59-

    Nanostratification of optical excitation in self-interacting 1D arrays

    Full text link
    The major assumption of the Lorentz-Lorenz theory about uniformity of local fields and atomic polarization in dense material does not hold in finite groups of atoms, as we reported earlier [A. E. Kaplan and S. N. Volkov, Phys. Rev. Lett., v. 101, 133902 (2008)]. The uniformity is broken at sub-wavelength scale, where the system may exhibit strong stratification of local field and dipole polarization, with the strata period being much shorter than the incident wavelength. In this paper, we further develop and advance that theory for the most fundamental case of one-dimensional arrays, and study nanoscale excitation of so called "locsitons" and their standing waves (strata) that result in size-related resonances and related large field enhancement in finite arrays of atoms. The locsitons may have a whole spectrum of spatial frequencies, ranging from long waves, to an extent reminiscent of ferromagnetic domains, -- to super-short waves, with neighboring atoms alternating their polarizations, which are reminiscent of antiferromagnetic spin patterns. Of great interest is the new kind of "hybrid" modes of excitation, greatly departing from any magnetic analogies. We also study differences between Ising-like near-neighbor approximation and the case where each atom interacts with all other atoms in the array. We find an infinite number of "exponential eigenmodes" in the lossless system in the latter case. At certain "magic" numbers of atoms in the array, the system may exhibit self-induced (but linear in the field) cancellation of resonant local-field suppression. We also studied nonlinear modes of locsitons and found optical bistability and hysteresis in an infinite array for the simplest modes.Comment: 39 pages, 5 figures; v2: Added the Conclusions section, corrected a typo in Eq. (5.3), corrected minor stylistic and grammatical imperfection

    Observation of three-dimensional behavior in surface states of bismuth nanowires and the evidence for bulk Bi charge fractionalization

    Full text link
    Whereas bulk bismuth supports very-high mobility, light, Dirac electrons and holes in its interior, its boundaries support a layer of heavy electrons in surface states formed by spin orbit interaction in the presence of the surface electric field. Small diameter d trigonal Bi nanowires (30 nm < d < 200 nm) were studied via magnetotransport at low temperatures and for fields up to 14 T in order to investigate the role of surfaces in electronic transport. A two-dimensional behavior was expected for surface charges; however we found instead a three-dimensional behavior, with a rich spectrum of Landau levels in a nearly spherical Fermi surface. This is associated with the long penetration length of surface states of trigonal wires. The prospect of the participation of surface transport and surface-induced relaxation of bulk carriers in the electronic properties of macroscopic samples is evaluated. We show that recent observations of magnetoquantum peaks in the Nernst thermopower coefficient, attributed to two-dimensional electron gas charge fractionalization, can be more plausibly interpreted in terms of these surface states.Comment: 14 pages, 3 figure
    • …
    corecore