21 research outputs found
Ez-response as a monitor of a Baikal rift fault electrical resistivity: 3D modelling studies
3D numerical studies have shown that the vertical voltage above the Baikal deep-water fault is detectable and that respective transfer functions, Ez-responses, are sensitive to the electrical resistivity changes of the fault, i.e.
these functions appear actually informative with respect to the resistivity «breath» of the fault. It means that if the fault resistivity changed, conventional electromagnetic instruments would be able to detect this fact by measurement
of the vertical electric field, Ez, or the vertical electric voltage just above the fault as well as horizontal magnetic field on the shore. Other electromagnetic field components (Ex, Ey, Hz) do not seem to be sensitive to the resistivity changes in such a thin fault (as wide as 500 m). On the other hand, such changes are thought to
be able to indicate a change of a stress state in the earthquake preparation zone. Besides, the vertical profile at the bottom of Lake Baikal is suitable for electromagnetic monitoring of the fault electrical resistivity changes.
Altogether, the vertical voltage above the deep-water fault might be one of earthquake precursors
Polymorphism of ITS sequences in 35S rRNA genes in Elymus dahuricus aggregate species: two cryptic species?
Nuclear ribosomal internal transcribed spacer (ITS) sequences were sequenced for 23 species and subspecies of Elymus sensu lato collected in Russia. The Neighbor-Net analysis of ITS sequences suggested that there are four ribotypes called Core Northern St-rDNA, Core Southern St-rDNA, Northern dahuricus St-rDNA and Southern dahuricus St-rDNA. The Core Southern variant of St-rDNA is closely related to rDNA of diploid Pseudoroegneria stipifolia (PI 313960) and P. spicata (PI 547161). The Core Northern St-rDNA is closely related to rDNA of P. cognata (PI 531720), a diploid species of Kyrgyzstan carrying StY variant of the St genome. The Core Northern St-rDNA is widespread among the Elymus species of Siberia and the Far East, including Yakutia and Chukotka. The Core Southern St-ribotype is typical of southern Elymus and Pseudoroegneria of the South Caucasus, Primorye, Pakistan, and South Korea. The Northern dahuricus St-ribotype and Southern dahuricus St-ribotype are derivatives of the Core Northern and Core Southern St-ribotypes, correspondingly. Both of them were found in all four studied species of the E. dahuricus aggregate: E. dahuricus Turcz. ex Griseb., E. franchetii Kitag., E. excelsus Turcz. ex Griseb. and Himalayan E. tangutorum (Nevski) Hand.-Mazz. In other words, there are at least two population groups (two races) of the Elymus dahuricus aggregate species that consistently differ in their ITS-sequences in Siberia, the Far East and Northern China. Each contains all morphological forms, which taxonomists now attribute either to different species of E. dahuricus aggr. (E. dahuricus sensu stricto, E. franchetii, E. tangutorum, E. excelsus) or subspecies of Campeiostachys dahurica (Turcz. ex Griseb.) B.R. Baum, J.L. Yang et C.C. Yen. At the moment it is unknown if there are any morphological differences between plants carrying either Northern or Southern dahuricus rDNA. Probably, they are cryptic species, but it is certain that if differences in morphology between the two races exist, they are not associated with signs that are now considered taxonomically significant and are used to separate E. dahuricus s. s., E. franchetii, E. tangutorum, and E. excelsus
Ez-response as a monitor of a Baikal rift fault electrical resistivity: 3D modelling studies
3D numerical studies have shown that the vertical voltage above the Baikal deep-water fault is detectable and that respective transfer functions, Ez-responses, are sensitive to the electrical resistivity changes of the fault, i.e. these functions appear actually informative with respect to the resistivity «breath» of the fault. It means that if the fault resistivity changed, conventional electromagnetic instruments would be able to detect this fact by measurement of the vertical electric field, Ez, or the vertical electric voltage just above the fault as well as horizontal magnetic field on the shore. Other electromagnetic field components (Ex, Ey, Hz) do not seem to be sensitive to the resistivity changes in such a thin fault (as wide as 500 m). On the other hand, such changes are thought to be able to indicate a change of a stress state in the earthquake preparation zone. Besides, the vertical profile at the bottom of Lake Baikal is suitable for electromagnetic monitoring of the fault electrical resistivity changes. Altogether, the vertical voltage above the deep-water fault might be one of earthquake precursors
Origin of Wild Polyploid <i>Avena</i> Species Inferred from Polymorphism of the ITS1 rDNA in Their Genomes
In this article, we analyzed the origin of wild polyploid oats (Avena L., Poaceae) using the region 18S rDNA (partially)–ITS1–5.8S rDNA obtained via NGS. There are six tetraploid (2n = 28) and four hexaploid (2n = 42) wild species differing by specific genome combinations: A. barbata, A. vaviloviana (AB), A. agadiriana (AB or BB), A. magna, A. murphyi, A. insularis (AC or CD), A. ludoviciana, A. sterilis, A. fatua, and A. occidentalis (ACD). We compared the pool of marker sequences of polyploid oats with those of their putative diploid ancestors: A. atlantica (As-genome), A. hirtula (As), A. canariensis (Ac), A. ventricosa (Cv), and A. clauda (paleopolyploid with Cp and A-related rDNA). We found 15 major ribotypes (more than 1000 reads per rDNA pool) in polyploid oats. Comparing them, we found that the AB-tetraploid oats possibly inherited their A-genome ribotypes from A. atlantica (As1-ribotype), whereas their B-genome ribotype is specific and can be a derivative of the A-genome family. Our data do not support the hypothesis of the CD-genome set in A. magna, A. murphyi, and A. insularis: they have an AC-genome ribotype constitution instead. The C-genome-related sequences could have been obtained from A. ventricosa. Hexaploids show a different ribotype pattern than tetraploids; the main ribotypes of A. fatua, A. ludoviciana, and A. sterilis probably belong to the D-group and are also shared with one of the major ribotypes of A. clauda
New Insights into the Genomic Structure of Avena L.: Comparison of the Divergence of A-Genome and One C-Genome Oat Species
We used next-generation sequencing analysis of the 3′-part of 18S rDNA, ITS1, and a 5′-part of the 5.8S rDNA region to understand genetic variation among seven diploid A-genome Avena species. We used 4–49 accessions per species that represented the As genome (A. atlantica, A. hirtula, and wiestii), Ac genome (A. canariensis), Ad genome (A. damascena), Al genome (A. longiglumis), and Ap genome (A. prostrata). We also took into our analysis one C-genome species, A. clauda, which previously was found to be related to A-genome species. The sequences of 169 accessions revealed 156 haplotypes of which seven haplotypes were shared by two to five species. We found 16 ribotypes that consisted of a unique sequence with a characteristic pattern of single nucleotide polymorphisms and deletions. The number of ribotypes per species varied from one in A. longiglumis to four in A. wiestii. Although most ribotypes were species-specific, we found two ribotypes shared by three species (one for A. damascena, A. hirtula, and A. wiestii, and the second for A. longiglumis, A. atlantica, and A. wiestii), and a third ribotype shared between A. atlantica and A. wiestii. A characteristic feature of the A. clauda ribotype, a diploid C-genome species, is that two different families of ribotypes have been found in this species. Some of these ribotypes are characteristic of Cc-genome species, whereas others are closely related to As-genome ribotypes. This means that A. clauda can be a hybrid between As- and C-genome oats
Intragenomic Polymorphism of the ITS 1 Region of 35S rRNA Gene in the Group of Grasses with Two-Chromosome Species: Different Genome Composition in Closely Related Zingeria Species
Zingeria (Poaceae) is a small genus that includes Z. biebersteiniana, a diploid species with the lowest chromosome number known in plants (2n = 4) as well as hexaploid Z. kochii and tetraploid Z. pisidica, and/or Z. trichopoda species. The relationship between these species and the other low-chromosomes species Colpodium versicolor are unclear. To explore the intragenomic polymorphism and genome composition of these species we examined the sequences of the internal transcribed spacer 1 of the 35S rRNA gene via NGS approach. Our study revealed six groups of ribotypes in Zingeria species. Their distribution confirmed the allopolyploid nature of Z. kochii, whose probable ancestors were Colpodium versicolor and Z. pisidica. Z. pisidica has 98% of rDNA characteristic only for this species, and about 0.3% of rDNA related to that of Z. biebersteiniana. We assume that hexaploid Z. kochii is either an old allopolyploid or a homodiploid that has lost most of the rRNA genes obtained from Z. biebersteiniana. In Z. trichopoda about 81% of rDNA is related to rDNA of Z. biebersteiniana and 19% of rDNA is derived from Poa diaphora sensu lato. The composition of the ribotypes of the two plants determined by a taxonomy specialist as Z. pisidica and Z. trichopoda is very different. Two singleton species are proposed on this base with ribotypes as discriminative characters. So, in all four studied Zingeria species, even if the morphological difference among the studied species was modest, the genomic constitution was significantly different, which suggests that these are allopolyploids that obtained genomes from different ancestors
Origin of the Rare Hybrid Genus Ă—<i>Trisetokoeleria</i> Tzvelev (<i>Poaceae</i>) According to Molecular Phylogenetic Data
In our article, we analyzed new data on the origin of the hybrid genus ×Trisetokoeleria. According to the morphological criteria ×T. jurtzevii is a hybrid between Koeleria asiatica s. l. and Trisetum spicatum, ×T. taimyrica, and originated from Koeleria asiatica s. l. and Trisetum subalpestre, ×T. gorodkowii, a hybrid between Koeleria asiatica and Trisetum ruprechtianum. Later ×T. taimyrica was transferred to Koeleria. Parental taxa are prone to active hybridization themselves, thus, new methods of next-generation sequencing (NGS) were needed to clarify the relationships of these genera. For NGS we used the fragment 18S rDNA (part)–ITS1–5.8S rDNA (totally 441 accessions). We analyzed ITS1–5.8S rDNA–ITS2 region, trnL–trnF and trnK–rps16 from eight samples of the five species, using the Sanger method: ×Trisetokoeleria jurtzevii, ×T. taimyrica, Koeleria asiatica, Sibirotrisetum sibiricum (=Trisetum sibiricum), and Trisetum spicatum. We also studied the pollen fertility of ×Trisetokoeleria and its possible progenitors. Our data partly contradicted previous assumptions, based on morphological grounds, and showed us a picture of developed introgression within and between Koeleria and Trisetum. ×T. jurtzevii, a totally sterile hybrid formed rather recently. We can suppose that ×T. jurtzevii is a hybrid between K. asiatica and some Trisetum s. str. Species, but not T. spicatum. ×T. gorodkowii, a hybrid in the stage of primary stabilization; it has one unique ribotype related to T. spicatum s. l. The second parental species is unrelated to Trisetum ruprechtianum. ×T. taimyrica and is a stabilized hybrid species; it shares major ribotypes with the T. spicatum/T. wrangelense group and has a minor fraction of rDNA related to genus Deyeuxia s. l