25 research outputs found

    Characteristic Evolution and Matching

    Get PDF
    I review the development of numerical evolution codes for general relativity based upon the characteristic initial value problem. Progress in characteristic evolution is traced from the early stage of 1D feasibility studies to 2D axisymmetric codes that accurately simulate the oscillations and gravitational collapse of relativistic stars and to current 3D codes that provide pieces of a binary black hole spacetime. Cauchy codes have now been successful at simulating all aspects of the binary black hole problem inside an artificially constructed outer boundary. A prime application of characteristic evolution is to extend such simulations to null infinity where the waveform from the binary inspiral and merger can be unambiguously computed. This has now been accomplished by Cauchy-characteristic extraction, where data for the characteristic evolution is supplied by Cauchy data on an extraction worldtube inside the artificial outer boundary. The ultimate application of characteristic evolution is to eliminate the role of this outer boundary by constructing a global solution via Cauchy-characteristic matching. Progress in this direction is discussed.Comment: New version to appear in Living Reviews 2012. arXiv admin note: updated version of arXiv:gr-qc/050809

    Characteristic Evolution and Matching

    Get PDF
    I review the development of numerical evolution codes for general relativity based upon the characteristic initial value problem. Progress is traced from the early stage of 1D feasibility studies to 2D axisymmetric codes that accurately simulate the oscillations and gravitational collapse of relativistic stars and to current 3D codes that provide pieces of a binary black spacetime. A prime application of characteristic evolution is to compute waveforms via Cauchy-characteristic matching, which is also reviewed.Comment: Published version http://www.livingreviews.org/lrr-2005-1

    LONG-TIME NUMERICAL INTEGRATION OF THE THREE-DIMENSIONAL WAVE EQUATION IN THE VICINITY OFAMOVING SOURCE

    No full text
    We propose a family of algorithms for solving numerically a Cauchy problem for the three-dimensional wave equation. The sources that drive the equation (i.e., the right-hand side) are compactly supported in space for any given time; they, however, may actually move inspace with a subsonic speed. The solution is calculated inside a finite domain (e.g., sphere) that also moves with a subsonic speed and always contains the support of the right-hand side. The algorithms employ a standard consistent and stable explicit finite-difference scheme for the wave equation. They allow one to calculate the solution for arbitrarily long time intervals without error accumulation and with the fixed non-growing amount of the CPU time and memory required for advancing one time step. The algorithms are inherently three-dimensional; they rely on the presence of lacunae in the solutions of the wave equation in oddly dimensional spaces. The methodology presented in the paper is, in fact, a building block for constructing the nonlocal highly accurate unsteady artificial boundary conditions to be used for the numerical simulation of waves propagating with finite speed over unbounded domains

    ACTIVE SHIELDING AND CONTROL OF NOISE ∗

    No full text
    Abstract. We present a mathematical framework for the active control of time-harmonic acoustic disturbances. Unlike many existing methodologies, our approach provides for the exact volumetric cancellation of unwanted noise in a given predetermined region of space while leaving unaltered those components of the total acoustic field that are deemed friendly. Our key finding is that for eliminating the unwanted component of the acoustic field in a given area, one needs to know relatively little; in particular, neither the locations nor structure nor strength of the exterior noise sources need to be known. Likewise, there is no need to know the volumetricproperties of the supporting medium across which the acoustic signals propagate, except, perhaps, in the narrow area of space near the boundary (perimeter) of the domain to be shielded. The controls are built based solely on the measurements performed on the perimeter of the region to be shielded; moreover, the controls themselves (i.e., additional sources) are also concentrated only near this perimeter. Perhaps as important, the measured quantities can refer to the total acoustic field rather than only to its unwanted component, and the methodology can automatically distinguish between the two. In the paper, we construct a general solution to the aforementioned noise control problem. The apparatus used for deriving the general solution is closely connected to the concepts of generalize
    corecore