631 research outputs found

    Correlations in noisy Landau-Zener transitions

    Get PDF
    We analyze the influence of classical Gaussian noise on Landau-Zener transitions during a two-level crossing in a time-dependent regular external field. Transition probabilities and coherence factors become random due to the noise. We calculate their two-time correlation functions, which describe the response of this two-level system to a weak external pulse signal. The spectrum and intensity of the magnetic response are derived. Although fluctuations are of the same order of magnitude as averages, the results is obtained in an analytic form.Comment: 12 pages LaTex with 6 EPS figure

    Phase diagram of the antiferromagnetic XY model in two dimensions in a magnetic field

    Full text link
    The phase diagram of the quasi-two-dimensional easy-plane antiferromagnetic model, with a magnetic field applied in the easy plane, is studied using the self-consistent harmonic approximation. We found a linear dependence of the transition temperature as a function of the field for large values of the field. Our results are in agreement with experimental data for the spin-1 honeycomb compound BaNi_2V_2O_3Comment: 3 page

    Devil's staircase of incompressible electron states in a nanotube

    Full text link
    It is shown that a periodic potential applied to a nanotube can lock electrons into incompressible states. Depending on whether electrons are weakly or tightly bound to the potential, excitation gaps open up either due to the Bragg diffraction enhanced by the Tomonaga - Luttinger correlations, or via pinning of the Wigner crystal. Incompressible states can be detected in a Thouless pump setup, in which a slowly moving periodic potential induces quantized current, with a possibility to pump on average a fraction of an electron per cycle as a result of interactions.Comment: 4 pages, 1 figure, published versio

    Mixed Heisenberg Chains. I. The Ground State Problem

    Full text link
    We consider a mechanism for competing interactions in alternating Heisenberg spin chains due to the formation of local spin-singlet pairs. The competition of spin-1 and spin-0 states reveals hidden Ising symmetry of such alternating chains.Comment: 7 pages, RevTeX, 4 embedded eps figures, final versio

    Thermodynamics of Two - Band Superconductors: The Case of MgB2_{2}

    Get PDF
    Thermodynamic properties of the multiband superconductor MgB2_{2} have often been described using a simple sum of the standard BCS expressions corresponding to σ\sigma- and π\pi-bands. Although, it is \textit{a priori} not clear if this approach is working always adequately, in particular in cases of strong interband scattering. Here we compare the often used approach of a sum of two independent bands using BCS-like α\alpha-model expressions for the specific heat, entropy and free energy to the solution of the full Eliashberg equations. The superconducting energy gaps, the free energy, the entropy and the heat capacity for varying interband scattering rates are calculated within the framework of two-band Eliashberg theory. We obtain good agreement between the phenomenological two-band α\alpha-model with the Eliashberg results, which delivers for the first time the theoretical verification to use the α\alpha-model as a useful tool for a reliable analysis of heat capacity data. For the thermodynamic potential and the entropy we demonstrate that only the sum over the contributions of the two bands has physical meaning.Comment: 27 pages, 10 figures, 1 table, submitted to Phys. Rev.

    Plasma Resonance in Layered Normal Metals and Superconductors

    Full text link
    A microscopic theory of the plasma resonance in layered metals is presented. It is shown that electron-impurity scattering can suppress the plasma resonance in the normal state and sharpen it in the superconducting state. Analytic properties of the conductivity for the electronic transport perpendicular to the layers are investigated. The dissipative part of the electromagnetic response in c-direction has been found to depend on frequency in a highly non-trivial manner. This sort of behavior cannot be incorporated in the widely used phenomenological Gorter-Kazimir model.Comment: 34 pages including 12 figures in uuencoded.file. A revised version. Several formulas and a number of misprints are corrected. A problem with printing of figures is fixe

    Vortex Plasma in a Superconducting Film with Magnetic Dots

    Get PDF
    We consider a superconducting film, placed upon a magnetic dot array. Magnetic moments of the dots are normal to the film and randomly oriented. We determine how the concentration of the vortices in the film depends on the magnetic moment of a dot at low temperatures. The concentration of the vortices, bound to the dots, is proportional to the density of the dots and depends on the magnetization of a dot in a step-like way. The concentration of the unbound vortices oscillates about a value, proportional to the magnetic moment of the dots. The period of the oscillations is equal to the width of a step in the concentration of the bound vortices.Comment: RevTeX, 4 page

    Field-induced superconductor to insulator transition in Josephson-junction ladders

    Full text link
    The superconductor to insulator transition is studied in a self-charging model for a ladder of Josephson-junctions in presence of an external magnetic field. Path integral Monte Carlo simulations of the equivalent (1+1)-dimensional classical model are used to study the phase diagram and critical behavior. In addition to a superconducting (vortex-free) phase, a vortex phase can also occur for increasing magnetic field and small charging energy. It is found that an intervening insulating phase separates the superconducting from the vortex phases. Surprisingly, a finite-size scaling analysis shows that the field-induced superconducting to insulator transition is in the KT universality class even tough the external field breaks time-reversal symmetry.Comment: 5 pages, 7 figures, to appear in Phys. Rev.

    Electron properties of carbon nanotubes in a periodic potential

    Full text link
    A periodic potential applied to a nanotube is shown to lock electrons into incompressible states that can form a devil's staircase. Electron interactions result in spectral gaps when the electron density (relative to a half-filled Carbon pi-band) is a rational number per potential period, in contrast to the single-particle case where only the integer-density gaps are allowed. When electrons are weakly bound to the potential, incompressible states arise due to Bragg diffraction in the Luttinger liquid. Charge gaps are enhanced due to quantum fluctuations, whereas neutral excitations are governed by an effective SU(4)~O(6) Gross-Neveu Lagrangian. In the opposite limit of the tightly bound electrons, effects of exchange are unimportant, and the system behaves as a single fermion mode that represents a Wigner crystal pinned by the external potential, with the gaps dominated by the Coulomb repulsion. The phase diagram is drawn using the effective spinless Dirac Hamiltonian derived in this limit. Incompressible states can be detected in the adiabatic transport setup realized by a slowly moving potential wave, with electron interactions providing the possibility of pumping of a fraction of an electron per cycle (equivalently, in pumping at a fraction of the base frequency).Comment: 21 pgs, 8 fig
    • …
    corecore