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We analyze the influence of colored classical Gaussian noise on Landau-Zener transitions during a two-level
crossing in a time-dependent regular external field. Transition probabilities and coherence factors become
random due to the noise. We calculate their two-time correlation functions, which describe the response of this
two-level system to a weak external pulse signal. The spectrum and intensity of the magnetic response are
derived. Although the noise enters the equation of motion for the Bloch vector in a multiplicative way,
nonperturbative analytic results are obtained by a resummation of diagrams in the limit of a short-noise
correlation time. Our results also cover regimes where fluctuations are of the same order of magnitude as
averages.
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I. INTRODUCTION

The Landau-Zener(LZ) theory1,2 (see, also Ref. 3) plays
an important role in many different physical problems rang-
ing from chemistry, biology, and the theory of collisions to
the tunneling of Bose-condensates, dynamics of glasses and
spin reversal in magnetic wires and nanomagnets, as well as
quantum computing. The LZ theory treats a rather simple
and general situation of two-level crossing. Near the point of
(avoided) level crossing, adiabaticity is violated and transi-
tions occur. The LZ Hamiltonian can be represented by a 2
32 matrix acting in a two-dimensional space of vectors
spanned by the basis vectorsu↑ l and u↓ l,

HLZ = SE↑ D

D* E↓
D , s1d

whereE↑=−E↓=−s" /2dnt and the transition matrix element
D does not depend on time. Without loss of generality one
can assumeD to be a positive constant. Landau and Zener
have found the evolution matrix

ULZ = S a b

− b* a* D , s2d

which connects initial amplitudes in the diabatic basis4 with
their final values. The entries

a = e−pg2
, b = −

Î2p

gGsig2d
e−pg2/2−ip/4 s3d

depend only on the dimensionless parameter

g =
D

"În
, s4d

which we call the LZ parameter.
In many applications the LZ theory must be modified to

take into account thermal noise or noise of a different nature.
In a pioneering work, Kayanuma5 has solved such a problem

on the basis of three simplifying assumptions:(i) the regular
transition matrix element is equal to zero(i.e., D=0); the
noise is completely responsible for transitions,(ii ) the corre-
lation function of noise has a simple exponential form, and
(iii ) the noise is fast. The first two limitations were lifted in
the work by Pokrovsky and Sinitsyn.6 Their analysis of time
scales for different processes distinguishes the correlation
time of noisetn, the accumulation timetacc=sntnd−1 during
which the noise effectively produces transitions(i.e., for t
=tacc, the bandwidth" /tn of the noise coincides with the
level spacing"nt), and the LZ timetLZ =D / s"nd during
which the standard LZ transition(without noise) proceeds.
The noise is called fast, iftn!tacc and tLZ !tacc. Such a
separation of time scales, which is also the basic assumption
for the present work, allows for two simplifications. The in-
equality tn!tacc allows for a nonperturbative resummation
of terms to infinite order in the noise amplitude. The inequal-
ity tLZ !tacc allows to neglect the regular matrix elementD
on time scalesut u *tLZ where noise is effective, and to ne-
glect the noise in the intervalut u &tacc where regular LZ
transitions occur. Since these intervals overlap, one can solve
first the reduced problem with the noise-producing transi-
tions and then match this solution with the LZ solution. In
this way the authors of Ref. 6 have found the average value
of the density matrix(see also Ref. 7 for a related numerical
study).

The two-level problem is as usual equivalent to the prob-
lem of spin 1

2 rotating in the time-dependent field containing
regular and stochastic parts. In their second work8 the same
authors represented the density matrix in terms of the Bloch
vectorg,

r̂std = 1
2f1̂ + gstd · ŝg, s5d

where ŝ is the triplet of Pauli matrices for spin12. It is a
well-known fact that the square of the Bloch vector is an
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integral of motion. In Ref. 8 this fact was used to calculate
the square fluctuation

kfdgstdg2l = g2 − kgstdl2.

However, the fluctuations of separate components,
kfdgistdg2l, si =x,y,zd were not calculated, and neither were
two-time correlatorskgistdgjst8dl found.

Such fluctuations are observable, for example, in a system
of magnetic molecules subject to the same magnetic field
(with identical regular and random contributions). The mea-
surement of thez component of the magnetic moment aver-
aged over the system yieldsmzstd=s" /2dTr ŝz·r̂std
=s" /2dgzstd, which depends on the particular noise history of
the measurement. The repetition of such a measurement for
many independent noise histories then yields an average
kmzstdl with fluctuations kfdmzg2l=s"2/4dkfdgzstdgl. Simi-
larly, the twofold time dependence of the correlators
kgistdgjst8dl determines spectral properties of the magnetiza-
tion. Namely, this situation is realized in magnetic systems
subject to an external regular and random magnetic field. In
both cases we assume that the characteristic wavelength of
the electromagnetic field is much larger than the linear size
of the system.

In two-level systems the random field can be realized by
an environment, for example, by thermal phonons or by the
magnetic field of nuclei. In such a situation different two-
level systems feel different random fields. Therefore, in the
ensemble consisting of a large numberN of the two-level
systems the fluctuation will be suppressed proportional to
1/ÎN. However, the two-time correlation function describes
the linear response of such a system to a small perturbation
dhstd (identical for all members) according to a standard
linear-response equation:

dksil =E
−`

t

dt8ksistdsjst8dldhjst8d. s6d

Such a perturbation can be realized as a pulse of electric
magnetic or acoustic field. In this work we determine all
these correlations under the same assumption of fast noise.

The outline of the paper is as follows. In Sec. II we for-
mulate the model for LZ transitions in the presence of the
noise we focus on. In Sec. III we calculate in a general form
the time evolution of averages and autocorrelations of the
Bloch vector in the absence of the regular transition matrix
elementD. These general findings are evaluated to obtain the
averages and fluctuations of transition probabilities first for
D=0 in Sec. IV, and then also forD.0 in Sec. V. Implica-
tions for the spectral width and intensity of fluctuations for
transitions in a gas of colliding atoms or molecules are dis-
cussed in Sec. VI. We close with concluding remarks in Sec.
VII. Some calculational details are collected in the Appen-
dix.

II. FUNDAMENTAL

We consider the dynamics of a quantum-spinŜ in the
presence of a time-dependent effective magnetic fieldBstd.

Absorbing the Landé factor and the Bohr magneton into this
field, the Hamiltonian reads

Ĥstd = − Bstd · Ŝ. s7d

The effective fieldBstd=bstd+hstd is composed of a regular
partb and a noisy parth with zero average,khstdl=0. In the
LZ theory, an avoided level crossing is described by the
regular field which may be chosen as

bstd = bzstdez + bxex, s8d

with a z component approximately linear in time,

bzstd < nt, n ; ḃzs0d, s9d

and an approximately time-independent perpendicular com-
ponentbx=−s2/"dD. The noise is considered as Gaussian
distributed and uncorrelated in the longitudinal and trans-
verse directions with variancessi , j =x,y,zd

khistdh jst8dl = di j f ist − t8d. s10d

The correlation functionsf i naturally are even functions. A
further planar symmetryfx= fy; f' is assumed.

Under the action of the Hamiltonian(7), the dynamics of
the density matrix is equivalent to the classical equation of
motion (Bloch equation)

ġstd = − Bstd 3 gstd. s11d

For the analysis of the Bloch equation it is convenient to
introduce

g± ;
1
Î2

sgx ± igyd, s12d

as well ash±, b±, andB±, by analogous definitions. In these
terms the Bloch equation can be rewritten as

ġ± = 7 iBzg± ± iB±gz, s13ad

ġz = ifB−g+ − B+g−g. s13bd

From these equations the longitudinal field componentBzstd
can be eliminated by going over to the interaction represen-
tation with respect to the Hamiltonian

Ĥ0std = − BzstdŜz. s14d

Using the time-evolution operator

Û0std = expH 1

i"
E

t0

t

dt8Ĥ0st8dJ , s15d

we rewrite the density matrix(5) as

r̂std = 1
2f1̂ + Û0stdg̃std · ŝÛ0

†stdg s16d

in terms of the transformed Bloch vector
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g̃±std = g±std exp h± iE
t0

t

dt8Bzst8dj. s17d

The transformation does not affect the longitudinal compo-

nent, g̃zstd=gzstd. Using analogous transformations forh̃, b̃,

and B̃, the Bloch equation simplifies to

ġ̃± = ± iB̃±g̃z, s18ad

ġ̃z = ifB̃−g̃+ − B̃+g̃−g. s18bd

In the limit of short noise correlation timetn, the correla-
tions for the transformed noise read

kh̃+stdh̃+st8dl = kh̃−stdh̃−st8dl = 0, s19ad

kh̃+stdh̃−st8dl = f̃'st,t8d, s19bd

with the correlator

f̃'st,t8d ; f'st − t8dexpHiE
t8

t

dt9Bzst9dJ
< f'st − t8deinst2−t82d/2. s19cd

Since f'st− t8d decays forut− t8 u @tn one may neglect the
contribution ofhzst9d to the time integral provided,

tn
2khz

2l ! 1. s20d

This condition is assumed in the following. It can be consid-
ered as a further limitation for the noise correlation time or
as a limitation for the noise amplitude. However, it is not
crucial and is introduced only for simplification. If the lon-
gitudinal noise is independent of the transverse one, its con-
tribution to the averaged exponent in Eq.(19a)–(19c)
can be reduced to the Debye-Waller factorWst ,t8d
=expf−1

2et8
t dt1et8

t dt2khst1dhst2dlg. The theory becomes
less transparent and more cumbersome, but in essence re-
mains the same, except for the range of very strong longitu-
dinal noise.

Although the longitudinal noise is not effective inf̃', it
cannot be neglected in general. From Eq.(17) one recognizes
thathz leads to a diffusive precession of the transverse com-
ponents ofg. Therefore, the expectation valueskg±l decay
exponentially on the dephasing time

tf =
2

Fz0
, s21d

with Fz0;e−`
` dtkhzstdhzs0dl. For short noise correlations,

tf,1/ftnkhz
2lg. Thus, longitudinal dephasing can be ne-

glected during the accumulation periodut u &tacc=1/ntn of
transverse noise forkhz

2l!n. On the other hand, on suffi-
ciently large time scalesut u @tf dephasing always sets in. If
the dynamics of the system are followed over long times, the
averages ofgx andgy vanish because of the random preces-
sion around thez axis. Nevertheless, in this case the trans-
verse amplitude

g' ; sgx
2 + gy

2d1/2 = s2g+g−d1/2 = s2g̃+g̃−d1/2, s22d

which is identical to the absolute value of the off-diagonal
element of the density matrix, can have a finite expectation
value.

III. NOISY DYNAMICS

In this section, we temporarily neglect regular transitions
(we setbx=0) and focus on transitions solely due to noise. To
solve the equations of motion for the propagation from an
initial time t0 to t. t0, we integrate the equations of motion
(18) to

g̃±std = g̃±st0d ± iE
t0

t

dt8h̃±st8dg̃zst8d, s23ad

g̃zstd = g̃zst0d −E
t0

t

dt1E
t0

t1

dt2wst1,t2dg̃zst2d

−E
t0

t

dt8fih̃+st8dg̃−st0d + c.c.g, s23bd

with the vertex pair function

wst1,t2d ; h̃+st1dh̃−st2d + c.c. s24d

Wherever “c.c.” occurs, it stands for the complex conjuga-
tion of the preceding term.

Equation(23b) may be fed back iteratively into itself and
into Eq.(23a), to expressg̃std entirely in terms ofg̃st0d. Each
term arising from this iteration can be visualized by a dia-
gram. Defining the integral series

Wt0
t st8d ; dst0 − t8d −E

t0

t

dt1E
t0

t1

dt2wst1,t2ddst2 − t8d

+E
t0

t

dt1E
t0

t1

dt2E
t0

t2

dt3

3E
t0

t3

dt4wst1,t2dwst3,t4ddst4 − t8d − . . . s25d

one obtains

g̃zstd =E
−`

`

dt8Wt0
t st8dHg̃zst0d −E

t0

t8
dt9fih̃+st9dg̃−st0d

+ c.c.gJ , s26ad

g̃±std = g̃±st0d ± iE
t0

t

dt8h̃±st8dE
−`

`

dt9Wt0
t8st9dHg̃zst0d

−E
t0

t9
dt-fih̃+st-dg̃−st0d + c.c.gJ . s26bd

In the diagrammatic representation, every factorW corre-
sponds to an arbitrary number of vertex pairsw. Correspond-
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ing to the definition(24), two “polarities” have to be consid-
ered per pair[cf. Fig. 1(a)]. During the time evolution(26) of
g̃, besides such paired vertices, “excess” vertices can appear
as first or last vertices during the evolution period.

According to the Wick theorem for Gaussian fields, the
noise averaging corresponds to all possible contractions be-
tween noise vertices. The correlations(19a)–(19c) imply that
contractions can be performed only between vertices with
opposite charge(in a pictorial language, we associate a
“charge” ±1 with every vertexh̃±). Therefore, only neutral
diagrams(where the number of verticesh̃+ equals the num-
ber of verticesh̃−) do not vanish.

A. Dynamics of averages

Before addressing correlations, we analyze which dia-
grams contribute to the averagekg̃stdl. Because of the neu-
trality constraint, this average reduces to

kg̃zstdl =E
−`

`

dt8kWt0
t st8dlkg̃zst0dl, s27ad

kg̃±stdl =H1 −E
t0

t

dt8E
−`

`

dt9E
t0

t9
dt-

3 kh̃±st8dWt0
t8st9dh̃7st-dlJkg̃±st0dl. s27bd

In factorizing the expectation values we assume that noise
before and aftert0 is statistically independent.

To leading order intn!tacc, only contractions between
neighboring vertices(in time order) contribute. Inkg̃zstdl, all
contractions are performed within the pair functionswst ,t8d
[cf. Fig. 1(b)], which (for t− t0@tn) give rise to factors

E
t0

t

dt8kwst,t8dl = F'sntd,

with the Fourier transform

F'sVd ; E
−`

`

dt cossVtdf'std. s28d

Returning to Eq.(27a), we find that the series can be
easily summed up to

kg̃zstdl = Gz,zst,t0dkg̃zst0dl s29ad

with

Gz,zst,t0d ; E
−`

`

dt8kWt0
t st8dl = expH−E

t0

t

dt8F'snt8dJ .

s29bd

This result was obtained in the Ref. 6 via the differential
equation

dkg̃zstdl
dt

= − F'sntdkg̃zstdl, s30d

which immediately follows from the integral formula(29a)
and (29b) and confirms the statistical independence of the
events before and after some moment of timet on a time
scale much larger thantn.

Likewise, to leading order intn!tacc, kg̃+stdl consists
only of contractions linking neighboring pairs due to the
presence of excess vertices[cf. Fig. 1(c)]. Such a contraction
leads to a factor

E
t0

t

dt8kh̃±stdh̃7st8dl = F'
± sntd

with

F'
± sVd ; E

0

`

dt e±iVtf'std.

Apparently,F'=F'
+ +F'

− and F'
+ =F'

− * because of the even
parity of the noise correlatorf'std. Hence, resummation of
diagrams gives

kg̃+stdl = G+,+st,t0dkg̃+st0dl s31d

with

G+,+st,t0d ; 1 −E
t0

t

dt8E
−`

`

dt9E
t0

t9
dt888

3kh̃±st8dWt0
t8st9dh̃7st888dl

= exp h−E
t0

t

dt8F'
± snt8dj. s32d

In summary, the dynamics of averages can be brought into
the compact formsa=z,±d

kg̃astdl = Ga,ast,t0dkg̃ast0dl, s33ad

Ga,ast,t0d ; e−fqastd−qast0dg s33bd

by means of noise integrals

FIG. 1. Diagrammatic representation ofw and contributions to
Ga,ast ,t0d. The time axis is chosen to point to the left-hand side. An
encircled + or − represents a noise vertexh̃±. (a) A pair of vertices
connected by a gray bond represents −wst1,t2d. A pair of bold
circles contains the sum over both possible polarities.(b) To leading
order in smalltn, only diagrams with noncrossing vertex contrac-
tions contribute.Gz,zst ,t0d consists only of noise contraction(wig-
gly lines) within vertex pairs.(c) G+,+st ,t0d consists of a negative
excess vertex as the first vertex(closest tot0) and a positive excess
vertex as the last vertex. Contractions can be performed only from
pair to pair.
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q±std ; E
−`

t

dt8F'
± snt8d, s34ad

qzstd ; E
−`

t

dt8F'snt8d. s34bd

Note that the subscripts ofq relate to the components of the
Bloch vector rather than to the noise components.

B. Dynamics of pair correlations

Using the diagrammatic approach established above, we
now proceed to calculate pair correlations of the Bloch vec-
tor for bx=0.

1. Reduction to equal-time correlators

We start by realizing that

kg̃astdg̃bst̄dl = e−fqastd−qast̄dgkg̃ast̄dg̃bst̄dl, s35d

since noise is uncorrelated before and aftert̄, assuming
(without loss of generality) that t. t̄. Thus we need to cal-
culate only equal-time correlators

C̃abstd ; kg̃astdg̃bstdl.

The correlations of principal interest are

kgzstdgzstdl = kg̃zstdg̃zstdl, s36ad

kg+stdg−stdl = kg̃+stdg̃−stdl. s36bd

They are invariant under the transformation to the interaction
representation.

We describe the evolution of the equal-time correlators

C̃abstd = o
gd

Gab,gdst,t0dC̃gdst0d

in terms of propagatorsGab,gdst ,t0d. In the diagrammatic
representation, these propagators consist only of ladder-like
diagrams: The times axest and t̄ represent the legs of the
ladder. Noise contractions between the sides are the rungs. A
contribution of any diagram with intersecting or overlapping
lines is smaller than that of the main sequence by a factor of
the ordertn/tacc. Since only “neutral” diagrams survive av-
eraging, many propagators vanish. The surviving propagators
satisfy “charge conservation”

xsad + xsbd = xsgd + xsdd,

with the charge function

xsad ; 5 1 for a = + ,

0 for a = z,

− 1 for a = − ,

which now refers to propagator indices, not to noise indices.
At the initial time t0, the propagator charge is opposite to the
charge of the first excess vertex. At the final time, the propa-
gator charge coincides with the charge of the last excess
vertex.

Among the nonvanishing propagators, several propagators
are mutually dependent. In particular, there is a trivial sym-
metry Gab,gd=Gba,dg corresponding to the exchange of the
legs of the ladder. Additional relations follow from the time-
reversal invariance or the complex conjugation, such as
Gz−,z−=Gz+,z+

* .
We therefore find the time evolution of the equal-time

correlators captured by the relations

C̃zzstd = Gzz,zzst,t0dC̃zzst0d + 2Gzz,+−st,t0dC̃+−st0d, s37ad

C̃+−std = G+−,zzst,t0dC̃zzst0d + fG+−,+−st,t0d

+ G+−,−+st,t0dgC̃+−st0d, s37bd

C̃++std = G++,++st,t0dC̃++st0d, s37cd

C̃z+std = fGz+,z+st,t0d + Gz+,+zst,t0dgC̃z+st0d. s37dd

It is important to realize that the dynamics of the “neutral”

correlations C̃z,z and C̃+,− is decoupled from the “non-

neutral” C̃z,± and C̃±,±. This implies that the latter correla-
tions will not be generated by noise if they are absent ini-
tially. However, such correlations can be generated in
general by the transverse components of the magnetic field.

For the convenience of the reader we anticipate the results
of our subsequent explicit calculation of the following propa-
gators:

Gzz,zzst,t0d = 1
3s1 + 2e−3uzd, s38ad

G+−,zzst,t0d = 1
3s1 − e−3uzd, s38bd

Gzz,+−st,t0d = G+−,zzst,t0d, s38cd

G+−,+−st,t0d = 1
6s2 + 3e−uz + e−3uzd, s38dd

G+−,−+st,t0d = 1
6s2 − 3e−uz + e−3uzd, s38ed

introducing the abbreviation

ua ; qastd − qast0d. s39d

These explicit calculations are based on integral equations
which we now derive and solve for the propagatorsGzz,zzand
Gzz,+− as two representative examples. The diagrammatic
derivation of the other propagators is deferred to the Appen-
dix. We refrain from presenting the expressions forG++,++,
Gz+,z+, and Gz+,+z since they are not relevant for our pur-
poses.

2. Propagator Gzz,zz

We start with the propagator for the longitudinal cor-
relator,
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Gzz,zzst,t0d =E
−`

`

dt8E
−`

`

dt̄8kWt0
t st8dWt0

t st̄8dl.

This expression follows directly from the contribution to the
autocorrelation of Eq.(26a) stemming from the initial value
g̃zst0d.

To leading order intn/tacc, the contributing diagrams
have the ladder structure mentioned previously(cf. Fig. 2).
On leg segments between two neighboring rungs of the lad-
der, an arbitrary number of noncrossing vertex contractions
can be performed. Since there are no final excess vertices
close to timet, all contractions between the last rung(at time
t1) and the final timet are intrapair contractions. Between the
last rung and the next to last rung, all contractions are inter-
pair contractions, forming a ring structure limited by timet1
andt2. Then, the next contractions on the legs prior tot2 can
be intrapair contractions again.

Since all possible diagrams prior tot2 have the same
structure as the diagrams prior tot, the propagator satisfies a
Bethe-Salpeter integral equation:

Gzz,zzst,t0d = Gz,z
2 st,t0d + 2E

t0

t

dt1E
t0

t1

dt2Gz,z
2 st,t1d

3 f'snt1dG+,+st1,t2dG−,−st1,t2df'snt2d

3 Gzz,zzst2,t0d. s40d

The first term represents the diagram without rungs. In the
second term, the last pair of rungs at timest1 and t2 is sepa-
rated from possible additional pairs prior tot2. On the ring
betweent1 and t2, the intrapair noise contractions are “ori-
ented.” The explicit factor 2 arises from the two possible
orientations.

To simplify the integral equation, it is convenient to sub-
stitute the time variables by variablesy;qzstd−qzst0d and
yi ;qzstid−qzst0d. This leads to

Gzz,zzsy,0d = e−2y + 2E
0

y

dy1E
0

y1

dy2

3 e−2sy−y1de−sy1−y2dGzz,zzsy2,0d. s41d

This integral equation can now be transformed into a differ-
ential equation in two steps:

d

dy
fe2yGzz,zzsy,0dg = 2E

0

y

dy2e
y+y2 3 Gzz,zzsy2,0d,

s42ad

d

dy
He−y d

dy
fe2yGzz,zzsy,0dgJ = 2eyGzz,zzsy,0d. s42bd

Performing the derivatives, the last equation simplifies to

d2

dy2Gzz,zzsy,0d + 3
d

dy
Gzz,zzsy,0d = 0.

This differential equation must be solved with the initial con-
ditions

Gzz,zzs0,0d = 1, s43ad

d

dy
Gzz,zzsy,0duy=0 + 2Gzz,zzs0,0d = 0. s43bd

The first one expresses the trivial fact that there is no time
evolution over a vanishing time interval and follows from
Eq. (40). The second one stems directly from Eq.(42a). Both
determine a surprisingly simple form of the final result(38a)
for Gzz,zzst ,t0d.

Considering an initial state withg̃st0d= g̃zst0dez, the con-
servation ofg2 implies the normalization

Gzz,zz+ 2G+−,zz= 1. s44d

This implies the result(38b) for G+−,zzst ,t0d, which is derived
also diagrammatically in the Appendix.

3. Propagator Gzz,+−

As an example for the diagrammatic calculation of the
other propagators, we consider here

Gzz,+−st,t0d =E
−`

`

dt8E
t0

t8
dt9E

−`

`

dt̄8E
t0

t̄8
dt̄9

3 kWt0
t st8dWt0

t st̄8dh̃−st9dh̃+st̄9dl. s45d

This expression follows directly from the contribution to the
autocorrelation of Eq.(26a) stemming from the initial value
g̃±st0d. Its diagrams(cf. Fig. 3) have no excess vertices close
to the final timet but opposite excess vertices close to the
initial time t0. Therefore, close tot0 only interpair contrac-
tions are possible, which are connected through the first rung
at the timet1. All possible contractions betweent1 andt have

FIG. 2. Diagrams contributing toGzz,zzst ,t0d. First, there is the
“ladder” without rungs. The diagrams with rungs can be represented
as propagatorsGz,zst ,t1d on both legs of the ladder, following the
ring contraction between the last rungs as timest1 andt2. Prior tot2
additional leg propagators and rings may occur. In the Bethe-
Salpeter equation, these additional contractions sum up to
Gzz,zzst2,t0d.
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the same structure as the diagrams ofGzz,zz. Therefore, the
diagrams can be summed implicitly to

Gzz,+−st,t0d =E
t0

t

dt1Gzz,zzst,t1dfsnt1d 3 G+,+st1,t0dG−,−st1,t0d.

s46d

After a transition to variablesy the integral can be performed
explicitly and yieldsGzz,+−=G+−,zz.

The normalization condition

Gzz,+−st,t0d + G+−,+−st,t0d + G+−,−+st,t0d = 1,

which expresses the conservation ofg2 for an initial trans-
verse state, determines already the sum of the propagators
G+−,+−st ,t0d and G+−,−+st ,t0d, which enter Eqs.(37) only in
this combination. Nevertheless, both propagatorsG+−,+−st ,t0d
andG+−,−+st ,t0d are calculated separately in the Appendix.

IV. TRANSITIONS PRODUCED BY NOISE ONLY

On the basis of the propagators derived in the previous
section we now evaluate transition probabilities and their
fluctuations, still focusing on the subcasebx=0. We consider
an arbitrary initial state att0=−` with arbitrary Bloch vector
gs−`d. We are interested in the final timet=`, where the
average is given by8

kgzs`dl = e−Qgzs− `d, s47ad

kg̃±s`dl = e−Q/2g̃±s− `d. s47bd

according to Eqs.(33). Since the noise correlators are even
functions of time differences, only the real parts ofqa con-
tribute to the differenceqas`d−qas−`d. We have introduced

Q ; qzs`d =
p

n
khx

2 + hy
2l

for abbreviation. It is important to realize that the decay of
the averaged Bloch vector depends only on theinstantaneous
noise correlation and that the final value can be finite only
for colored noise.

Although the final slow amplitudesg̃±s`d will be finite if
the initial amplitudesg̃±s−`d were finite, the original ampli-
tudes vanish,

kg±s`dl = 0, s48d

due to the diffusive random precession leading to a decay on
the dephasing timetf given in Eq.(21). However, the trans-
verse amplitudeg' decays likeg̃±,

kg's`dl = e−Q/2g's− `d. s49d

For the variances we obtain—suppressing the obvious
time argumentss` ,−`d of the propagators—

kgz
2s`dl = Gzz,zzgz

2s− `d + Gzz,+−g'
2 s− `d

= 1
3hg2 + e−3Qf2gz

2s− `d − g'
2 s− `dgj, s50ad

kg'
2 s`dl = 2G+−,zzgz

2s− `d + fG+−,+− + G+−,−+gg'
2 s− `d

= 1
3h2g2 − e−3Qf2gz

2s− `d − g'
2 s− `dgj, s50bd

and for the fluctuations

kfdgzs`dg2l ; kgz
2s`dl − kgzs`dl2

= 1
3hg2 + f2e−3Q − 3e−2Qggz

2s− `d

− e−3Qg'
2 s− `dj, s51ad

kfdg's`dg2l ; kg'
2 s`dl − kg's`dl2

= 1
3h2g2 − 2e−3Qgz

2s− `d

− fe−3Q − 3e−Qgg'
2 s− `dj. s51bd

For systems prepared initially in a state with a well-
definedg, the correlationsCz± and C±± do not necessarily
vanish. They are not explicitly considered here since they do
not couple toCzz and C+− according to Eq.(37). Further-
more, on long-time scales, phase diffusion due tohz annihi-
lates these non-neutral correlations anyway.

To discuss the statistics of transitions between the two
levels, we consider the system to be located initially in the
state u↑ l, i.e., gs−`d=ez. A measurement which detects at
time t whether the system is in the stateu↑ l or u↓ l yields the
probabilities

P↑↑/↑↓std = Tr 1
2s1̂ ± ŝzdr̂std = 1

2f1 ± gzstdg. s52d

The trace accounts for the average over quantum fluctuations
for a given realization of noise. The additional averaging
over the noise leads to the final expectation values,

kP↑↑s`dl = 1
2f1 + e−Qg,kP↑↓s`dl = 1

2f1 − e−Qg. s53ad

Since the probabilitiesP↑↑/↑↓ depend on the noise, they are
fluctuating quantities themselves. Their fluctuations are

kfdP↑↓s`dg2l = 1
12s1 − 3e−2Q + 2e−3Qd. s53bd

Remarkably, the fluctuations of probabilities in general have
the same order of magnitude as average values. They are
weak only if the noise is weak, i.e.,kfdP↑↓s`dg2l<Q2/4 for
Q!1. In the opposite limiting caseQ@1 of strong noise the
two levels become equipopulated,kP↑↑s`dl=kP↑↓s`dl= 1

2,
and the fluctuation is equal tokfdP↑↓s`dg2l= 1

12.

FIG. 3. The propagatorGzz,+− consists of diagrams in which the
first vertices are excess vertices. They can be contracted with a
certain number of pairs until the first rung occurs at timet1. The
contraction of all later pairs yieldsGzz,zzst ,t1d.
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V. LZ SYSTEM WITH NOISE

In this section we assume that not only the noise, but also
the regular part of the Hamiltonian, has a finite nondiagonal
matrix elementD corresponding to a finite transverse com-
ponent of the regular magnetic field. As it was shown in Ref.
6, if the noise is fast, there exists a well-defined time sepa-
ration for the transition due to the noise and due to the regu-
lar part of the Hamiltonian. Consider matching at times ±t3

with tLZ ! t3!tacc. The time evolution may be decomposed
into three intervals:(i) From t=−` to t=−t3 one may neglect
D. The transition is only under the influence of noise. Since
t3!tacc, this time evolution is approximately the same as
from t=−` to t=0 in the absence ofD. (ii ) From t=−t3

to t= t3 the LZ transition occurs. Sincet3@tLZ, time evolu-
tion is approximately the same as fromt=−` to t=` in the
absence of noise.(iii ) From t= t3 to t=` the situation is
again analogous to the regime(i).

We represent the time-evolution operator as

Ûst,t0d = Û0stdŨˆ st,t0dÛ0
†st0d, s54d

and approximate

Ũ
ˆ s`,− `d = Ũ

ˆ
iii Ũ

ˆ
iiŨ

ˆ
i , s55ad

Ũ
ˆ

i = Ũ
ˆ s0,−`d for D = 0, s55bd

Ũ
ˆ

ii = Ũ
ˆ s`,− `d for h = 0, s55cd

Ũ
ˆ

iii = Ũ
ˆ s`,0d for D = 0 s55dd

for the time evolution operator acting on the slow vector.
We assume that att=−` the density matrix is diagonal

(complete decoherence), i.e.,

gs− `d = gzs− `dez.

Then,

kgzs− `dgzs− `dl = gz
2s− `d

is the only nonvanishing correlator att=−`. Sincetn! tx,
the noise in intervals(i) and (iii ) is statistically independent
and the averaging can be performed separately for both in-
tervals.

A. Interval (i)

NeglectingD in the first time interval, we find att=−tx the
averages

kg̃zs− t3dl = e−Q/2gzs− `d, s56ad

kg̃±s− t3dl = 0, s56bd

and correlations

C̃zzs− t3d = Gzz,zzs0,−`dgz
2s− `d = 1

3s1 + 2e−3Q/2dgz
2s− `d,

s57ad

C̃+−s− t3d = G+−,zzs0,−`dgz
2s− `d = 1

3s1 − e−3Q/2dgz
2s− `d.

s57bd

According to Eqs.(37) all other independent pair correla-
tions vanish att=−t3.

B. Interval (ii)

Time evolution at intermediate times from −t3 to t3 is
given by

Ûii = ÛLZ.

Hence the density matrix evolves according to

r̂st3d = ÛLZr̂s− t3dÛLZ
†

which implies the transformation

g̃st3d · ŝ = ÛLZg̃s− t3d · ŝÛLZ
†

for the transformed Bloch vectorg̃. The explicit transforma-
tion of its components reads

1g̃+st3d
g̃zst3d
g̃−st3d

2 = ULZ ·1g̃+s− t3d
g̃zs− t3d
g̃−s− t3d

2 s58ad

with the rotation matrix

ULZ = 1 a*2 − Î2a*b* − b*2

Î2a*b uau2 − ubu2 Î2ab*

− b2 − Î2ab a2 2 . s58bd

From these relations we obtain

kg̃zst3dl = Uzz
LZkg̃zs− t3dl = suau2 − ubu2de−Q/2gzs− `d,

s59ad

kg̃+st3dl = U+z
LZkg̃zs− t3dl = − Î2a*b*e−Q/2gzs− `d

s59bd

for the averages. Analogously, correlations are transformed
according to

C̃abst3d = o
gd

Uag
LZUbd

LZC̃gds− t3d. s60d

Since we are ultimately interested only in the correlations

C̃zzs`d and C̃+−s`d, and since the time evolution in interval
(iii ) again follows Eqs.(37), we need to evaluate at timet
= t3 only the two correlations

C̃zzst3d = sUzz
LZd2C̃zzs− t3d + 2Uz+

LZUz−
LZC̃+−s− t3d

= 1
3f1 + 2s1 − 6uau2ubu2de−3Q/2ggz

2s− `d, s61ad

C̃+−st3d = U+z
LZU−z

LZC̃zzs− t3d + fU++
LZU−−

LZ + U+−
LZU−+

LZgC̃+−s− t3d

= 1
3f1 − s1 − 6uau2ubu2de−3Q/2ggz

2s− `d. s61bd

As a check of these results, we verify the normalization re-

lation C̃zzst3d+2C̃+−st3d=gz
2s−`d.
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C. Interval (iii)

As already mentioned, the time evolution in interval(iii )
is absolutely analogous to the evolution in interval(i). We
therefore obtain

kg̃zs`dl = Gz,zs`,0dkg̃zst3dl = suau2 − ubu2de−Qgzs− `d,

s62ad

kg̃+s`dl = G+,+s`,0dkg̃zst3dl = − Î2a*b*e−fq+s`d−q+s0dg

3 e−Q/2gzs− `d. s62bd

These results were obtained already in Ref. 8. In terms ofg
they mean

kgzs`dl = suau2 − ubu2de−Qgzs− `d, s63ad

kg's`dl = Î2uauubue−3Q/4gzs− `d. s63bd

We recall that the averageskgxs`dl=kgys`dl=0 vanish due to
the presence of the longitudinal noise component. The cor-
relations follow from Eqs.(37) with t=` and t0= t3:

C̃zzs`d = 1
3f1 + 2s1 − 6uau2ubu2de−3Qggz

2s− `d, s64ad

C̃+−s`d = 1
3f1 − s1 − 6uau2ubu2de−3Qggz

2s− `d. s64bd

In the presence of regular transitions, the transition probabili-
ties and their fluctuations—given in Eqs.(53a) and (53b) in
the absence ofD—finally become

kP↑↑/↑↓s`dl = 1
2f1 ± suau2 − ubu2de−Qg s65ad

and

kfdP↑↑/↑↓s`dg2l = 1
12f1 − 3s1 − 4uau2ubu2de−2Q + 2s1

− 6uau2ubu2de−3Qg. s65bd

To obtain the explicit dependence on the LZ parameter one
may useuau2=e−2pg2

and the unitarity relationubu2=1−uau2.

VI. RESPONSE SPECTRUM AND INTENSITY

Let a short pulse of an effective field directed along axisi
act on the LZ system at some moment of timet. Its response
at a later moment oft8= t+t is determined by the correlation
function,Ki,jst ,td=ksistdsjst+tdl. It is reasonable to measure
the spectral content of the response at a fixed time of initial
pulset. It is given by the Fourier transform

Ki,jst;vd =E
0

`

Ki,jst,tdeivtdt. s66d

According to general relations(35) and (33), in the limit of
t→` such a function vanishes or saturates to a finite value.
For example, in the case ofi = j =z and t@ t3 it is equal to

C̃zzstdexp s−et
` F'snt8ddt8d. Therefore, the spectral density

of the response contains a 1/v component at a small fre-
quency with an intensity that depends on the time of excita-
tion. This is not surprising since the LZ process violates the

homogeneity of time. At infinite timet this intensity reaches

a finite limit C̃zzs`d. It happens since the noise becomes in-
effective at a sufficiently large time and does not randomize
the quantum amplitudes any more. Therefore, any quantum
amplitude or a component of the Bloch vectorg changes
after this time in an almost deterministic way. On the other
hand, the spectral intensity remains finite even att→` since
the value ofg reached at the moment, when the noise be-
comes ineffective, is random.

Another (incoherent) contribution to the spectral density
arises from the variation of the correlation function at a finite
time,

Kzzst,td − Kzzs`,td = Kzzs`,td

3FexpSE
t+utu

`

F'snt8ddt8D − 1G .

s67d

To estimate the spectral width of this contribution we as-
sume that either timet is large enough or the noise is weak.
Then the exponent in Eq.(67) can be expanded to the linear
term. Its spectral width is easily estimated asDv1=1/tacc.
The spectral intensity of this line att,tacc can be estimated

as I1~ C̃zzs`dkhx
2+hy

2l /n. It decreases rapidly with growing
time t.

If the LZ processes are repeated randomly with the aver-
age timetcoll between the events(as it happens in a gas of
colliding atoms or molecules), the 1/v line is smeared out to
the widthDv0,1/tcoll!Dv1, whereas its average intensity

I0 is proportional toC̃zzs`d. The width of the incoherent line
remains the sameDv1=1/tacc, but its intensity is stabilized
at a valueI1stcolld~ I1wstcoll /taccd the smaller the larger is
tcoll [herewsxd is a function describing the decay of the noise
correlations, which depends on details].

Thus, the main contribution to the spectral width of the
population or induced field fluctuations consists of two nar-
row lines. The first has the width determined by collisions
and a permanent intensity per particle. The second has a
permanent width, but its intensity is determined by collision
time. In the rarefied gas, or more generally iftcoll@tacc, the
first line is narrower and stronger than the second one.

VII. CONCLUSIONS

We have calculated the correlation functions of the Bloch
vector components in the LZ process subject to a fast Gauss-
ian noise. These correlators determine the linear response of
the LZ system to a weak, time-dependent probe signal. Two-
time correlation functions are factorizable at the time scale
much larger than the noise correlation timetn due to the
statistical independence of random processes. Thus the main
problem is the calculation of simultaneous averages. The
condition of the fast noise allows to use for these averages
the ladder graphs only. The resulting Bethe-Salpeter equation
can be reduced to differential equations which are exactly
solvable. In general, fluctuations are strong and of the same
order of magnitude as the average values.
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Since the noise is ineffective for transitions at sufficiently
large timet@tacc, the transition probabilities or the compo-
nents of the Bloch vector remain deterministically coherent
after this time. Therefore, the spectrum of the fluctuations
contains a narrow 1/v line, whose intensity is determined by
the distribution of these values at the time when the noise
became ineffective. Besides this line, there exists another
narrow line with a width of about 1/tacc and an intensity
depending on the pulse time and going to zero when this
time goes to infinity.
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APPENDIX: DETAILS FOR CORRELATORS

Here we provide some details on the calculation of corre-
lation propagators.

1. Propagator G+−,zz

The calculation of the propagatorG+−,zz can be performed
largely in parallel to the calculation ofGzz,+− in Sec. III B 3.
The starting point is the equation

G+−,zzst,t0d =E
t0

t

dt8E
t0

t

dt̄8E
−`

`

dt̄88E
−`

`

dt9

3 kh̃−st8dh̃+st̄8dWt0
t8st9dWt0

t̄8st̄88dl.

Using the Wick theorem, we perform the contractions,

G+−,zzst,t0d =E
t0

t

dt1G+,+st,t1dG−,−st,t1d 3 fsnt1dGzz,zzst1,t0d,

wheret1 is the time of the last rung of the ladder(last means
closest tot, see Fig. 4). After a substitution fromt1 to y1 the
integral is elementary with the result

G+−,zzst,t0d = 1
3s1 − e−3fqzstd−qzst0dgd.

2. Propagator G+−,+−

From the equations of motion(26) one extracts

G+−,+−st,t0d

= 1 −E
t0

t

dt8E
−`

`

dt9E
t0

t9
dt-kh̃−st8dWt0

t8st9dh̃+st-dl

−E
t0

t

dt̄8E
−`

`

dt̄9E
t0

t̄9
dt̄-kh̃+st̄8dWt0

t̄8st̄9dh̃−st̄-dl

+E
t0

t

dt8E
−`

`

dt9E
t0

t9
dt-E

t0

t

dt̄8E
−`

`

dt̄9E
t0

t̄9
dt̄-

3kh̃−st8dWt0
t8st9dh̃+st-dh̃+st̄8dWt0

t̄8st̄9dh̃−st̄-dl.

After averaging, the sum over the ladder diagrams can be
captured by a Bethe-Salpeter equation:

FIG. 4. The diagramsG+−,zz, are analogous to the diagrams of
Gzz,+− with the only difference being that now the excess vetices are
the last vertices.

FIG. 5. G+−,+− consists of diagrams with excess vertices as first
and last vertices on both time legs. There are disconnected diagrams
(where the “ladder” has no rungs) and connected diagrams(where
the ladder has rungs). In the second case, the excess vertices are are
connected by rungs ast1 and t2, and betweent1 and t2 additional
pairs can be contracted as inGzz,zzst1,t2d.

FIG. 6. The diagrams ofG+−,−+ as similar to these ofG+−,+−

with the difference being that the polarity of the first excess vertices
is inverted. Therefore, no disconnected diagrams can be formed.
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G+−,+−st,t0d = G+,+st,t0dG−,−st,t0d E
t0

t

dt1E
t0

t1

dt2

3G+,+st,t1dG−,−st,t1dfsnt1dGzz,zzst1,t2dfsnt2d

3G+,+st2,t0dG−,−st2,t0d,

wheret1 is the time of the last rung andt2 the time of the first
rung (see Fig. 5). All contractions in between sum up to
Gzz,zzst1,t2d. Since the latter propagator is explicitly known,
the integrals can be performed directly, yielding Eq.(38d).

3. Propagator G+−,−+

Similar to the previous propagator, one now has

G+−,−+st,t0d

=E
t0

t

dt8E
−`

`

dt9E
t0

t9
dt-E

t0

t

dt̄8E
−`

`

dt̄9E
t0

t̄9
dt̄-k

3h̃−st8dWt0
t8st9dh̃−st-dh̃+st̄8dWt0

t̄8st̄9dh̃+st̄-dl.

The configuration of the excess vertices necessitates at least
two rungs at timest1 andt2 (see. Fig. 6). The contractions in
between again sum up toGzz,zzst1,t2d, leading to

G+−,−+st,t0d

=E
t0

t

dt1E
t0

t1

dt2G+,+st,t1dG−,−st,t1dfsnt1dGzz,zz

3st1,t2dfsnt2dG+,+st2,t0dG−,−st2,t0d,

and eventually to Eq.(38e).
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