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V. L. Pokrovsky
Department of Physics, Texas A&M University, College Station, Texas 77843-4242, USA
and Landau Institute for Theoretical Physics, Chernogolovka, Moscow District, 142432, Russia

S. Scheidl
Institut flr Theoretische Physik, Universitat zu Kéln, Zilpicher Strasse 77, D-50937 Kdéln, Germany
(Received 8 December 2003; published 15 July 2004

We analyze the influence of colored classical Gaussian noise on Landau-Zener transitions during a two-level
crossing in a time-dependent regular external field. Transition probabilities and coherence factors become
random due to the noise. We calculate their two-time correlation functions, which describe the response of this
two-level system to a weak external pulse signal. The spectrum and intensity of the magnetic response are
derived. Although the noise enters the equation of motion for the Bloch vector in a multiplicative way,
nonperturbative analytic results are obtained by a resummation of diagrams in the limit of a short-noise
correlation time. Our results also cover regimes where fluctuations are of the same order of magnitude as
averages.
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I. INTRODUCTION on the basis of three simplifying assumptioti$:the regular

) 2 transition matrix element is equal to zeftoe., A=0); the
The Landau-Zenefl.Z) theory* (see, also Ref. Splays noise is completely responsible for transitio(is), the corre-

an important role in many different physical problems rang—I tion funct ¢ noise h imol tial d
ing from chemistry, biology, and the theory of collisions to ation function of noise has a simple exponential form, an

the tunneling of Bose-condensates, dynamics of glasses a ilj ) the noise is fast. The first two limitations were lifted in
spin reversal in magnetic wires and nanomagnets, as well age work by Pokrovsky and SinitsyiTheir analysis of time

quantum computing. The LZ theory treats a rather Simplescales for different processes distinguishes the correlation
. . . . a 1o

and general situation of two-level crossing. Near the point of'rﬂ_e r:)fr?mse%, th(:f aC_CUTUIat'%n t|meacc—(y_rn)_ dl;rmg

(avoided level crossing, adiabaticity is violated and transi-‘iv ich the naise effectively produces transitione., fort

tions occur. The LZ Hamiltonian can be represented by a 2~ 7aco the bandwidthvi/ 7, of the noise coincides with the

X 2 matrix acting in a two-dimensional space of vectors'€/€l Spacingfiut), and the LZ timer,=A/(Av) during
spanned by the basis vectdfs and||) which the standard LZ transitiowithout nois@ proceeds.

The noise is called fast, if,,<< 7, and 7z <7, Such a
o= (ET A ) (1) separation of time scales, which is also the basic assumption
LZ7 A E/ for the present work, allows for two simplifications. The in-

. ] equality 7,,<< 7, allows for a nonperturbative resummation
whereE;=~E =~(#/2)st and the transition matrix element of terms to infinite order in the noise amplitude. The inequal-
A does not depend on time. Without loss of generality ONGty 7, < 7, allows to neglect the regular matrix element
can assume to be a positive constant. Landau and Zeneron time scalegt| = 7, where noise is effective, and to ne-
have found the evolution matrix glect the noise in the intervat| < 7, where regular LZ
a b transitions occur. Since these intervals overlap, one can solve
U,_z=( x ) (2) first the reduced problem with the noise-producing transi-
-b a tions and then match this solution with the LZ solution. In
which connects initial amplitudes in the diabatic basith  this way the authors of Ref. 6 have found the average value
their final values. The entries of the density matrixsee also Ref. 7 for a related numerical
study).

-
aze™ p=- V2w o mAl2-imla &) The two-level problem is as usual equivalent to the prob-
' NS, lem of spin% rotating in the time-dependent field containing

depend only on the dimensionless parameter regular and stochastic parts. I.n their ;e_cond Waine same

authors represented the density matrix in terms of the Bloch
A vectorg,
Y= (4)
Ny

which we call the LZ parameter.

In many applications the LZ theory must be modified to

pHy=3[1+g(t) - &, (5)

take into account thermal noise or noise of a different naturewhere ¢ is the triplet of Pauli matrices for spié. It is a
In a pioneering work, Kayanumaas solved such a problem well-known fact that the square of the Bloch vector is an
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integral of motion. In Ref. 8 this fact was used to calculateAbsorbing the Landé factor and the Bohr magneton into this
the square fluctuation field, the Hamiltonian reads

<[5g(t)]2> = gz - <g(t)>2- ﬁ(t) =-B(t) - S. (7)
However, the fluctuations of separate components o ]
([6g,(01?), (i=x,y,2) were not calculated, and neither were The effective fieldB(t)=b(t) + n(t) is composed of a regular
two-time correlatorg;(t)g;(t")) found. partb and a noisy pariy with zero averagg,»(t))=0. In the

Such fluctuations are observable, for example, in a systeth? theory, an avoided level crossing is described by the
of magnetic molecules subject to the same magnetic fieldegular field which may be chosen as
(with identical regular and random contribution¥he mea- _
surement of the component of the magnetic moment aver- b(D) =b,(t)e, + by, (8)
aged over the system yieldsm()=(A/2)Tr o;p(t)  with az component approximately linear in time,
=(h/2)g,(t), which depends on the particular noise history of
the me_asurement. The. repe.tition. of such a.measurement for b(t) ~1t, v= bZ(O), (9)
many independent noise histories then yields an average
(my(t)) with fluctuations ([ om,]?)=(%42/4){[5g,(t)]). Simi-  and an approximately time-independent perpendicular com-
larly, the twofold time dependence of the correlatorsponentb,=—(2/4)A. The noise is considered as Gaussian
(gi(t)g;(t')) determines spectral properties of the magnetizadistributed and uncorrelated in the longitudinal and trans-
tion. Namely, this situation is realized in magnetic systemsrerse directions with variances, j=x,y,2)
subject to an external regular and random magnetic field. In
both cases we assume that the characteristic wavelength of (m®)7;(t")) = &;fi(t—-t'). (10
the electromagnetic field is much larger than the linear size . . ,
of the system. The correlation function$; naturaII_y are even functions. A

In two-level systems the random field can be realized byurther planar symmetry,=f,=f, is assumed. _
an environment, for example, by thermal phonons or by the Under the action of the Hamiltonia(), the dynamics of
magnetic field of nuclei. In such a situation different two- the _den3|ty matrix is equivalent to the classical equation of
level systems feel different random fields. Therefore, in theMotion (Bloch equation
ensemble consisting of a large numbérof the two-level o
systems the fluctuation will be suppressed proportional to 9(t) ==-B(® X g(v). (11)
1/\sN. However, the two-time correlation function descnbe.s,:or the analysis of the Bloch equation it is convenient to
the linear response of such a system to a small perturbatioftroduce
Sh(t) (identical for all membensaccording to a standard
linear-response equation:

||"

0. = =(gcxigy), (12

N

t v
Xs)= f dt'(s(H)s(t"))shy(t). (6) o
—o as well as#., b, andB., by analogous definitions. In these

Such a perturbation can be realized as a pulse of electritc?rmS the Bloch equation can be rewritten as

magnetic or acoustic field. In this work we determine all

these correlations under the same assumption of fast noise.
The outline of the paper is as follows. In Sec. Il we for-

mulate the model for LZ transitions in the presence of the g,=i[B_g. - B.g_]. (13b)

noise we focus on. In Sec. Il we calculate in a general form . o .
the time evolution of averages and autocorrelations of th&om these equations the longitudinal field comporifi)

Bloch vector in the absence of the regular transition matrixcan be eliminated by going over to the interaction represen-
elementA. These general findings are evaluated to obtain théation with respect to the Hamiltonian

averages and fluctuations of transition probabilities first for - -

A=0 in Sec. IV, and then also fax>0 in Sec. V. Implica- Ho() = = B,(1)S,. (14)
tions for the spectral width and intensity of fluctuations for
transitions in a gas of colliding atoms or molecules are dis

g:= +iBg: +iB.g,, (138

Using the time-evolution operator

cussed in Sec. VI. We close with concluding remarks in Sec. t
VIl. Some calculational details are collected in the Appen- Uo(t) = exp{_f dt’ﬁo(t’)}, (15)
dix. to
we rewrite the density matrits) as
Il. FUNDAMENTAL o R
_ _ . p(t) =31+ Ugtjg(t) - 5UY(D] (16)
We consider the dynamics of a quantum-s@rin the

presence of a time-dependent effective magnetic k. in terms of the transformed Bloch vector
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t — 2 2\1/2 — 1/2 — = \1/2
B0 = gu(0) exp L f dvB.(t')). 17) g, = (g +0)"“=(20,9)"°=(28.9)"%, (22

t which is identical to the absolute value of the off-diagonal

The transformation does not affect the longitudinal Compo_element of the density matrix, can have a finite expectation

value.
nent,g,(t)=g,(t). Using analogous transformations gy b,

andB, the Bloch equation simplifies to
I1l. NOISY DYNAMICS

9. = *iB.g,, (189 _ _ _ »

In this section, we temporarily neglect regular transitions
e~ (we seth,=0) and focus on transitions solely due to noise. To
9,=i[Bg.-B.g]. (18D solve the equations of motion for the propagation from an

In the limit of short noise correlation time, the correla- initial time t, to t>t,, we integrate the equations of motion
tions for the transformed noise read (18 to
t
(7 07:()) = 7-O7-()) = 0, (193 (D) = Gulto) £ f dt7.)GH), (239
to
@7 =T (L1, (19b) C
with the correlator 1) =G(to) - f dy f dtw(ty, t2)T,(to)
to to
t
s H '’ s t
fl(t,t )= fi(t -t )EXD{IJ;, dt’ Bz(t )} _ f dt/[i';h(t/)"g‘_(to) + C.C.], (23b)
to
N AV 2_312
~f (t-t)e" I, (199 with the vertex pair function
Since f | (t-t') decays for|t—t’| > 7, one may neglect the Wity t) = 7 (t)7-(ty) + c.C. (24)

contribution of 7,(t”) to the time integral provided, . .
Wherever “c.c.” occurs, it stands for the complex conjuga-

A <1. (200 tion of the preceding term.
) L ) ) . Equation(23b) may be fed back iteratively into itself and
This condition is assumed in the following. It can be consid-j,i Eq.(23a), to expresd(t) entirely in terms ofj(t,). Each

ered zla_s a fgrthir I'T}'tat'on for thel_nodlse l(_:|orre|at|on_ tiMe Ofiem arising from this iteration can be visualized by a dia-
as a limitation for the noise amplitude. However, it is not g o “pefining the integral series

crucial and is introduced only for simplification. If the lon-

gitudinal noise is independent of the transverse one, its con- t 4

tribution to the averaged exponent in E¢193—(190) Wi, (1) = dlto—t) = f d J dtpw(ty, tp) ot — ')
can be reduced to the Debye-Waller facto(t,t’) o o

=exd -3/}, dtf}, dit(7(t) 7(t))]. The theory becomes +J“ it ftl ot f2 ot

less transparent and more cumbersome, but in essence re- 0 L % 2 . 8

mains the same, except for the range of very strong longitu- .
dinal noise. st
Although the longitudinal noise is not effective fn, it t

cannot be neglected in general. From El) one recognizes .

that 7, leads to a diffusive precession of the transverse com®n€ obtains

ponents ofg. Therefore, the expectation valués.) decay o t

exponentially on the dephasing time 9.t = f dt' W (")) Tlto) - J dt"[i7.(t")g-(to)
) tg

dtw(ty, t)W(ts t) St —t') = ... (25)

0

2
W e (21) + c.c.]} , (264

with Fo= [, dt(#,t)5,0)). For short noise correlations,

r¢~1/[rn<n§>]. Thus, longitudinal dephasing can be ne- _ _ ot U AV IS

glected during the accumulation peritid < 7,..=1/v, of 0.(1) :gi(to)ilf dt' 7. (t )f dt'W (1)) Gto)

transverse noise fofz?)<v. On the other hand, on suffi- o -

ciently large time scalel$| > 7, dephasing always sets in. If i s

the dynamics of the system are followed over long times, the - . dt"[i7.(t")9-(to) +c.c] . (26b)
0

averages of), andg, vanish because of the random preces-
sion around the axis. Nevertheless, in this case the trans-In the diagrammatic representation, every facfércorre-
verse amplitude sponds to an arbitrary number of vertex pairsCorrespond-
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(a) wW=e ®=@e ©+6 @ o
FL(Q)EJ dr cogQnf (7). (28

() «H— 33— -
1!: i
Returning to Eq.(27a, we find that the series can be

(c) 4;& &% % F ot N easily summed up to
{
t ’ G0) = Gyt 1) Bilto)) (299

FIG. 1. Diagrammatic representation wfand contributions to )
G..(t,tp). The time axis is chosen to point to the left-hand side. AnWith
encircled + or — represents a noise vertgx (a) A pair of vertices o t
connected by a gray bond represents(tf,t,). A pair of bold G, ,(t,to) EJ dt’(M (t’))=exp{—J dt’Fl(vt’)}.
circles contains the sum over both possible polaritigsTo leading ' o 0 to
order in smallr,, only diagrams with noncrossing vertex contrac- (29b)
tions contribute G, /(t,t) consists only of noise contractiawig-
gly lines) within vertex pairs.(c) G...(t,t) consists of a negative Thjs result was obtained in the Ref. 6 via the differential
excess vertex as the first vertelosest tap) and a positive excess equation
vertex as the last vertex. Contractions can be performed only from
pair to pair. G, (t
W) - F @), (30
ing to the definition(24), two “polarities” have to be consid-
ered per paifcf. Fig. a)]. During the time evolutioi26) of ~ Which immediately follows from the integral formul@9a)
T, besides such paired vertices, “excess” vertices can appe@fd (29b) and confirms the statistical independence of the
as first or last vertices during the evolution period. events before and after some moment of timen a time
According to the Wick theorem for Gaussian fields, thescale much larger thag,.
noise averaging corresponds to all possible contractions be- Likewise, to leading order inm, <7y, (G.(t)) consists
tween noise vertices. The correlatiqi®a—(19¢) imply that ~ only of contractions linking neighboring pairs due to the
contractions can be performed only between vertices witlipresence of excess vertiges. Fig. 1(c)]. Such a contraction
opposite charggin a pictorial language, we associate aleads to a factor
“charge” +1 with every vertexy,). Therefore, only neutral ‘
diagrams(where the number of verticés, equals the num- J dt’ (7.0 7+ (1)) = F* ()
t

ber of verticess_) do not vanish. 0

. with
A. Dynamics of averages
Before addressing correlations, we analyze which dia- (= (Q)Ef dr €07 (7).
grams contribute to the averag@(t)). Because of the neu- + 0

trality constraint, this average reduces to R R
Apparently,F, =F" +F| andF| =F" because of the even

0 parity of the noise correlataf, (t). Hence, resummation of
(@A1) = f dt' (W (t))(@.(to)), (278 diagrams gives
@.(t) = G+,+(tat0)@+(t0)> (31
t * " .
@i(t» — {1 _f dtrf dt”Jt dt” with
to —* to t % "
) G, (Lt = 1—J dt’f dt”ft dt’’’
X (@(OW () 7=(") [ @:to)). (27D to - fo

X ()W (1) ("))
In factorizing the expectation values we assume that noise .
before and aftet; is statistically independent. - exp{—f dt'F (1)), (32)
To leading order inm, << 7., Only contractions between % +
neighboring verticegin time ordej contribute. In(g,(t)), all
contractions are performed within the pair functiond,t’)
[cf. Fig. A(b)], which (for t—ty> 7)) give rise to factors

In summary, the dynamics of averages can be brought into
the compact forma=z,%

t @a(t» = Ga,a(tytO)@a(to»a (333)
J dt'(w(t,t’))=F  (nt),
to Gy alt,tg) = g1%a079a(10)] (33b)
with the Fourier transform by means of noise integrals
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t Among the nonvanishing propagators, several propagators
94(t) = f dt'F (st"), (343 are mutually dependent. In particular, there is a trivial sym-

— metry G,z ,5=Gpa,s, COrresponding to the exchange of the

. legs of the ladder. Additional relations follow from the time-
a(t) = J dUF, (st'). (34b) Eaevers_acla*mvanance or the complex conjugation, such as
— 7-,2-" Zz+, 7+

We therefore find the time evolution of the equal-time
Note that the subscripts df relate to the components of the correlators captured by the relations

Bloch vector rather than to the noise components.

. | . Codt) = Gyt 1) Colt) + 2654 (1,1)Co(to), (372
B. Dynamics of pair correlations

Using the diagrammatic approach established above, we

now proceed to calculate pair correlations of the Bloch vec- Ci(t) = izt t) Czdto) + [Gi- (L, to)
tor for b,=0. +G,_ (L t)IC,(to), (37D
1. Reduction to equal-time correlators
We start by realizing that (~3++(t) = G++,++(t,t0)”é++(t0), (370
@a(0Gp(D) = €1%020G, [(G0),  (35)

. o — . C,.(t)= + C,.(to). 7
since noise is uncorrelated before and afterassuming Cui(t) =[Gy 11 (titg) + Gt 411, 10)JICi(tg) . (370)
(W:thOUt ||OSS of ?Qnerahwh?tm. Thus we need to cal- |t js important to realize that the dynamics of the “neutral”
culate only equal-time correlators correlations C,, and C, _ is decoupled from the “non-

o (t) = (@,()F4(t)). neutral”’ C,, and Et +. This implies that the latter correla-
af o B . . R ’ . . ..
_ o tions will not be generated by noise if they are absent ini-
The correlations of principal interest are tially. However, such correlations can be generated in
_ ~ general by the transverse components of the magnetic field.
(9:(09:(1)) = (@:(1/G(V), (363 For the convenience of the reader we anticipate the results
- of our subsequent explicit calculation of the following propa-
<g+(t)g—(t)> = <§+(t)g—(t)>- (36b) gators:
They are invariant under the transformation to the interaction N a0
representation. Gzzdtito) = 5(1 +267°%), (389
We describe the evolution of the equal-time correlators
e = Gi- dttg) =5(1 —e73%), 38b
Cupt) = 25 Gap,ys(Lt)Cys(to) -zt to) = 5 ) (38b)
Y
in terms of propagator§,.t,ty). In the diagrammatic Gaz+-(ttg) = Gi— 24t t), (380
representation, these propagators consist only of ladder-like
diagrams: The times axdsandt represent the legs of the Gy (ttg) = 5(2+ 3%+ €73%), (38d)

ladder. Noise contractions between the sides are the rungs. A

contribution of any diagram with intersecting or overlapping

lines is smaller than that of the main sequence by a factor of Gio—iltity) = 5(2 - 370+ €7%%), (38¢
the orderr,/ m4cc Since only “neutral” diagrams survive av-

eraging, many propagators vanish. The surviving propagatoigtroducing the abbreviation

satisfy “charge conservation”

aa = ﬂa(t) - ﬁa(to) . (39)
x(@) + x(B) = x(y) + x(9), . . . .
. ) These explicit calculations are based on integral equations
with the charge function which we now derive and solve for the propagatGss,, and

G,,+- as two representative examples. The diagrammatic

1 for a=+, A .
derivation of the other propagators is deferred to the Appen-

x(a)=) 0 for a=z dix. We refrain from presenting the expressions @, ..,
-1 for a=-, G, 2+, and G, 4, since they are not relevant for our pur-
poses.

which now refers to propagator indices, not to noise indices.
At the initial timet,, the propagator charge is opposite to the
charge of the first excess vertex. At the final time, the propa-
gator charge coincides with the charge of the last excess We start with the propagator for the longitudinal cor-
vertex. relator,

2. Propagator G,,,
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«* Z To simplify the integral equation, it is convenient to sub-
Gzz,z2(t,to) stitute the time variables by variablgs=s 9,(t) - 9,(t,) and
«* 2 y; = 9,(t;) — 94tp). This leads to

_ y Y1
= Gpdy,0) =€ +2 f dy; f dy,
0 0

G EVEY Sy Ty 2
X e_z(y_Y1)e_(yl_y2)GzzziyZ! O) . (41)
z &y Ty &y oz - . . .
<_t h This integral equation can now be transformed into a differ-
0 ential equation in two steps:
+
d y
«5 L Z 4y Crurdy, 0] =2 f dy,€/"%2 X Gyl 0),
Gzz,zz(tZ,tO) 0
<5 3.8 i z (423
t ty to to
FIG. 2. Diagrams contributing t&,,,At,to). First, there is the E{e"yg[ezyGuZ{y,O)]} =26'G,,,4y,0). (42b
“ladder” without rungs. The diagrams with rungs can be represented dy dy

as propagator§, ,(t,t;) on both legs of the ladder, following the
ring contraction between the last rungs as timjeandt,. Prior tot,
additional leg propagators and rings may occur. In the Bethe- d? d

Salpeter equation, these additional contractions sum up to WZGzzzz(yvo) +3@Gzzzi(y, 0)=0.

Gzzzz(tZ ’ tO) .

Performing the derivatives, the last equation simplifies to

This differential equation must be solved with the initial con-

% % ditions
G, At to) = dt' | dt(W ()W ().
s2zdtito) f j (W ()W () 6unf0.0 =1, 433
This expression follows directly from the contribution to the d _
autocorrelation of Eq26a stemming from the initial value dszzzz()h 0)ly=0 + 2G,,,40,0) = 0. (43b)

Ga(to)-
To leading order in7,/ 75, the contributing diagrams
have the ladder structure mentioned previously Fig. 2.

The first one expresses the trivial fact that there is no time
evolution over a vanishing time interval and follows from

On leg segments between two neighboring rungs of the IaoEq'(40)_' The seco_n(_j 0?6 s_ten?s ?'reCtl¥ frr]on;_ @Fa)' zlgth
der, an arbitrary number of noncrossing vertex contractionfe'“gc’;rm'ne a surprisingly simple form of the final re<@3
can be performed. Since there are no final excess vertic ar ZZZ%(t'tO_)' _ ) _

close to timet, all contractions between the last rufa time Cor_'s'de“gg. an initial state witB(to)=G,(to)e;, the con-
t,) and the final time are intrapair contractions. Between the S€rvation ofg® implies the normalization

last rung and the next to last rung, all contractions are inter- Gyzzst 2G,_5,= 1. (44)
pair contractions, forming a ring structure limited by time o ‘ o _
andt,. Then, the next contractions on the legs priot,toan  This implies the result38b) for G.._,(t,ty), which is derived

be intrapair contractions again. also diagrammatically in the Appendix.
Since all possible diagrams prior t9 have the same
structure as the diagrams priortidhe propagator satisfies a 3. Propagator G-
Bethe-Salpeter integral equation: As an example for the diagrammatic calculation of the
. t other propagators, we consider here
1
G, At = G2t t +2f dtf dt,G2,(t,t ” v S
zzzi 0) z,z( O) . 1 . 2 z,z( l) Gzz+—(tvt0):f dt,f dtuj dt,f dt’
- to - to
X £ (1t1)Gs (11, 1) G (ty, 1) f | (w1p)

! "\~ AP "
X Gorlto o). (40) X (W ()W, )7t 7). (49)
This expression follows directly from the contribution to the
The first term represents the diagram without rungs. In th@utocorrelation of Eq(268 stemming from the initial value
second term, the last pair of rungs at timgandt, is sepa-  0.(tp). Its diagramgcf. Fig. 3) have no excess vertices close
rated from possible additional pairs prior to On the ring  to the final timet but opposite excess vertices close to the
betweent; andt,, the intrapair noise contractions are “ori- initial time t,. Therefore, close td, only interpair contrac-
ented.” The explicit factor 2 arises from the two possibletions are possible, which are connected through the first rung
orientations. at the timet,. All possible contractions betweépandt have
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«* . (9:(=)) =0, (48)
Gzz,+-(tyt0) . . . .
< - due to the diffusive random precession leading to a decay on
t to the dephasing time,, given in Eq.(21). However, the trans-
= verse amplitudey, decays likeg,,
< R (9. (=) =€ %, (~<=). (49)
Lz Cazzz{lr) ¥ o S SRS o S o X NI For the variances we obtain—suppressing the obvious
N t, t time argumentgee, —») of the propagators—
FIG. 3. The propagatds,,.- consists of diagrams in which the <9§(°°)> = Gzzzzgi(— o) + Gzz+—92l(‘ o)
first vertices are excess vertices. They can be contracted with a I O R 1 YN N
certain number of pairs until the first rung occurs at titpeThe - 3{9 te2g,(==) ~gi (=] (503

contraction of all later pairs yield§,,,At,t;). ) 5 5
<9L(°°)> = 26+—,z£z(_ ) + [G+—,+— + G+—,—+]gj_(_ )
the same structure as the diagramsf,, Therefore, the = %{292_ 30[2g2(— %) — g2 (- )]}, (50b)

diagrams can be summed implicitly to
and for the fluctuations

t
Gzz+—(tyt0) = fto dthZZZZ(tytl)f(th) X G+'+(t1,t0)G_Y_(tl,to). <[5gz(°°)]2) = <g§(oo)> _ <gz(°°)>2
(46) = 3{g% +[267% - 36 2]gZ(~ )
After a transition to variableg the integral can be performed -39 (- =)}, (51a
explicitly and yieldsG,,.-=G,_ ,,
The normalization condition (89, ()7 =(g° () = (g, ())?
Gz;+—(t:to) + G+—,+—(tyto) + G+—,—+(t:to) =1, = %{292 - 26_3®g§(— o)
which expresses th_e conservationgsffor an initial trans- - [e30 - 3e—®]gi(— )}, (51b)
verse state, determines already the sum of the propagators o ) )
G- .(t,ty) and G,_ _(t,ty), which enter Eqs(37) only in For systems prepared initially in a state with a well-

definedg, the correlationsC,, and C.. do not necessarily
vanish. They are not explicitly considered here since they do
not couple toC,, and C,_ according to Eq(37). Further-
more, on long-time scales, phase diffusion dueyt@nnihi-
lates these non-neutral correlations anyway.

On the basis of the propagators derived in the previous To discuss the statistics of transitions between the two
section we now evaluate transition probabilities and theilevels, we consider the system to be located initially in the
fluctuations, still focusing on the subcdsg=0. We consider state|71), i.e., g(-»)=e,. A measurement which detects at
an arbitrary initial state at=—o with arbitrary Bloch vector timet whether the system is in the state or || ) yields the
g(->). We are interested in the final tintee, where the probabilities
average is given By

(gy)) = e_(H)gz(_ @), (479

this combination. Nevertheless, both propaga@ys.(t,to)
andG,_ _.(t,tp) are calculated separately in the Appendix.

IV. TRANSITIONS PRODUCED BY NOISE ONLY

M () =TriA26)pM) =31+g0]. (52

The trace accounts for the average over quantum fluctuations
(§.(0)) = €792, (- ). (47p  for a given realization of noise. The additional averaging

. . _ over the noise leads to the final expectation values,
according to Eqs(33). Since the noise correlators are even

functions of time differences, only the real partsif con- (T, (0)) = 3[1 +€ @] (IT; ()) = 5[1 - €®]. (539

tribute to the differencé () —¥,(—=). We have introduced . o )
Since the probabilitie$l;;;;; depend on the noise, they are

T fluctuating quantities themselves. Their fluctuations are
O = 9(=) = — (75 + )

([l ()] = 55(1 -3 +2e7%). (53D
for abbreviation. It is important to realize that the decay of ) o
the averaged Bloch vector depends only onitistantaneous Reémarkably, the fluctuations of probabilities in general have
noise correlation and that the final value can be finite onlythe same order of magnitude as averagezvaluezs. They are
for colored noise. weak only if the noise is weak, i.g[,dl1; (*)]*) =~ 0O</4 for

Although the final slow amplitude§. (=) will be finite if ~ ©<1.In the opposite limiting cas®>1 of strong noise }he

the initial amplitude&j,(—o) were finite, the original ampli- two levels become equipopulated];;())=(IL; («))=3,
tudes vanish, and the fluctuation is equal (cﬁﬁﬂm(oo)]zﬁliz.
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V. LZ SYSTEM WITH NOISE

In this section we assume that not only the noise, but also

PHYSICAL REVIEW B70, 014416(2004

Ci(-ty) =Gy_40,-%)g2(- ) = 3(1 - 7302 g2(- o).
(57b)

the regular part of the Hamiltonian, has a finite nondiagonal _ _ _
matrix elementA corresponding to a finite transverse com-According to Eqs.(37) all other independent pair correla-
ponent of the regular magnetic field. As it was shown in Reftions vanish at=-t..

6, if the noise is fast, there exists a well-defined time sepa-
ration for the transition due to the noise and due to the regu-

lar part of the Hamiltonian. Consider matching at times +

B. Interval (ii)

Time evolution at intermediate times front~to t is

with t,, <t < 7., The time evolution may be decomposed given by

into three intervals(i) Fromt=-x to t=-t,. one may neglect

A. The transition is only under the influence of noise. Since

Ui =Uz.

tx < Ty this time evolution is approximately the same asHence the density matrix evolves according to

from t=-o0 to t=0 in the absence oA. (ii) From t=-t,
to t=t, the LZ transition occurs. Sindg > 7, 7, time evolu-
tion is approximately the same as frdm—x to t=« in the
absence of noisqliii) From t=t, to t=« the situation is
again analogous to the reginie.

We represent the time-evolution operator as

O(t.to) = B0 UL 1) Ut (54
and approximate
G(m,—w) = ﬁiiiﬁiiﬁiv (553
ﬁi:fJ(O,—oc) forA=0, (55b)
U= U(ee,—2) for =0, (550
Uy =U(,0) for A=0 (550)

for the time evolution operator acting on the slow vector.
We assume that at=— the density matrix is diagonal
(complete decoherenge.e.,
9(= ) = g(~ 0)e,.
Then,

(9= 20)gy(— )} = g(— )

is the only nonvanishing correlator &t —». Since 7,,<t,,
the noise in intervalsi) and(iii) is statistically independent

and the averaging can be performed separately for both in-

tervals.

A. Interval (i)

NeglectingA in the first time interval, we find at=-t, the
averages

@A t.)) = e %%g (- =), (563

@:(-t)) =0, (56b)

and correlations
Cod—tx) = Gy d 0,— ) g2~ ) = 3(1 + 267302) g2(~ o0),
(573

p(t) = Uizp(- 1)U,
which implies the transformation
F(t) - 5=0,8(-t) - &OIZ

for the transformed Bloch vect@:. The explicit transforma-
tion of its components reads

§+(tx) §+(_ tx)
@z(tx) = ULZ ) gz(_ tx) (583)
@—(tx) @—(— tx)
with the rotation matrix
a2 —\2a’b" -Db?2
UZ=(\2ab [a?-1|b2 \2ab’ (58b)
-p2 -\2ab @&
From these relations we obtain
(G(t.0)) = UZZ(@,(~ t.0) = ([af? - b2 e ®"2g,(= ),
(593
(@.(t2)) = ULZ(G,(~ t.)) = —\2a'b"e ®2g,(~ )
(59b)

for the averages. Analogously, correlations are transformed

according to

Coplts) = 2 ULZULEC - ). (60)
b2

Since we are ultimately interested only in the correlations

EZZ(OO) and E:+_(00), and since the time evolution in interval
(iii) again follows Eqs(37), we need to evaluate at tinte
=t only the two correlations

C,Aty) = (U5)ZC,(~t,) + 2U2U2C, (- t,)

=1[1+2(1 - 6a3bP)e3®?|gX(- ), (618

Cu(ts) = UZUMZE, (-~ t,0) + [U2UMZ + UZUHIC, (- ty)
= 3[1-(1 - 6a?b)e*?]g¥(~ ). (61b)

As a check of these results, we verify the normalization re-
lation C,{t ) +2C,_(t.) =g2(—).
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C. Interval (iii) homogeneity of time. At infinite timé this intensity reaches

As already mentioned, the time evolution in intergigl)  a finite limit C, (). It happens since the noise becomes in-
is absolutely analogous to the evolution in intergial We  effective at a sufficiently large time and does not randomize

therefore obtain the quantum amplitudes any more. Therefore, any quantum
) o o amplitude or a component of the Bloch vecigrchanges
(@A) = G, (,0)(GAtx)) = (|al* = [b]*) e Vg,(— ), after this time in an almost deterministic way. On the other

(628  hand, the spectral intensity remains finite evet-ate since
the value ofg reached at the moment, when the noise be-

_ ‘ — _ [oa e[ 9.)-9,(0)] comes ineffective, is random.
(94()) = Gy 4(,00(G,tx) =~ V2abe Another (incoherent contribution to the spectral density

X €92g (- ). (62b)  arises from the variation of the correlation function at a finite
These results were obtained already in Ref. 8. In terng of time,
they mean KoA7,t) = K {0,1) =K, (o0, 1)

— 2 a0 e
)y =(|al* - |b|*)e — ), 63
(0)) = ([af? - [b)e O g~ ) (633 Xlexp(J FL(W,)dT,) i 1]_
t+7

(g, () = \2lal|ble 3®"g(- ). (63b)

(67)
We recall that the averagég,())=(g,(=))=0 vanish due to

the presence of the lonaitudinal noise component. The cor- To estimate the spectral width of this contribution we as-
P 9 L p_ o sume that either timeis large enough or the noise is weak.
relations follow from Eqs(37) with t=o andty=t.:

Then the exponent in E@67) can be expanded to the linear
(644 term. Its spegtral V\_/idth is lea_sily estimated Amlzlllracc

The spectral intensity of this line at- 7, can be estimated
~ ) as ;< C, o) {72+ 2/ v. It decreases rapidly with growing
Co(®)=3[1-(1-6abPe™lgi(-=). (64D  fimey
In the presence of regular transitions, the transition probabili- !f the LZ processes are repeated randomly with the aver-
ties and their fluctuations—given in Eq&3a and(53b) in ~ age timer,, between the eveni@s it happens in a gas of

Cod%) = 3[1 + 2(1 - 6a?[b|)e 0]g2(- =),

the absence aA—finally become cr:)llidi_r(ljghaAtoms (:)Lr/ molecijle)sthehl/w line is smeared out to
- 111 (el e o t g widt o Teol <Awg, W §reas its ayerage |nten_5|ty
(M () = 5[1 £ (|a]* - [b])e™®] (653 lo is proportional toC,{). The width of the incoherent line
and remains the samAw,;=1/7,, but its intensity is stabilized
at a valuel(7eon) < l1¢(7eon/ Tacd the smaller the larger is
(6111 (20)]% = 35[1 - 3(1 - 4aqb|2)e2® + 2(1 Teon [NEree(x) is a function describing the decay of the noise
~ 6lal?|b|?)e 30 (65b) correlations, which depends on dethils

Thus, the main contribution to the spectral width of the
To obtain the explicit dependence on the LZ parameter onpopulation or induced field fluctuations consists of two nar-
may use|a|2:e‘2”72 and the unitarity relatiofb|>=1-|a/2. row lines. The first has the width determined by collisions
and a permanent intensity per particle. The second has a
permanent width, but its intensity is determined by collision
VI. RESPONSE SPECTRUM AND INTENSITY time. In the rarefied gas, or more generallyrif; > 7., the

. . . . . first line is narrower and stronger than the second one.
Let a short pulse of an effective field directed along axis 9

act on the LZ system at some moment of timés response

at a later moment df =t+ 7 is determined by the correlation
function, K; (t, 7) =(s()sj(t+ 7)). It is reasonable to measure
the spectral content of the response at a fixed time of initial We have calculated the correlation functions of the Bloch

VII. CONCLUSIONS

pulset. It is given by the Fourier transform vector components in the LZ process subject to a fast Gauss-
" ian noise. These correlators determine the linear response of

Ki(t; o) :f Ki(t, eedr. (66) the Lz system to a We_:ak, time-deper_ldent probe signal. Two-

' o time correlation functions are factorizable at the time scale

) ) ) o much larger than the noise correlation time due to the
According to general relation85) and(33), in the limit of  giatistical independence of random processes. Thus the main
7— 9 such a function vanishes or saturates to a finite valueyroplem is the calculation of simultaneous averages. The
For example, in the case ofj=z andt>1. it is equal to  congition of the fast noise allows to use for these averages
C,{t)exp (-=[{ F (v7')d7’). Therefore, the spectral density the ladder graphs only. The resulting Bethe-Salpeter equation
of the response contains ad /component at a small fre- can be reduced to differential equations which are exactly
guency with an intensity that depends on the time of excitasolvable. In general, fluctuations are strong and of the same
tion. This is not surprising since the LZ process violates theorder of magnitude as the average values.
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<« Y4 gt -
G- z(t,t0) G +(t,to)
<— z <— +
t to t to
(l—é'w—mg & & 2 2 <—+—g’"—v~§ it it éﬂ%—_—
Gzz,2(t1,0) Gz 2(t1,t2)
PEFan S an SV 0 WV 0§ Sl z PERVo RS Ml " ¥ & W

t ty to t t1 t fo

FIG. 4. The diagrams,_,, are analogous to the diagrams of = FIG. 6. The diagrams 06..- _, as similar to these 06,_ .-
G,,+- with the only difference being that now the excess vetices aravith the difference being that the polarity of the first excess vertices
the last vertices. is inverted. Therefore, no disconnected diagrams can be formed.

Since the noise is ineffective for transitions at sufficiently APPENDIX: DETAILS FOR CORRELATORS
large timet> 7, the transition probabilities or the compo- Here we provide some details on the calculation of corre-
nents of the Bloch vector remain deterministically COheren‘iation propagators.
after this time. Therefore, the spectrum of the fluctuations
contains a narrow 1 line, whose intensity is determined by
the distribution of these values at the time when the noise 1. Propagator G, ,,
became ineffective. Besides this line, there exists another ) '
narrow line with a width of about 1. and an intensity The calculation of the propagat@.. ., can be performed

depending on the pulse time and going to zero when thidargely in parallel to the calculation @, in Sec. Il B 3.
time goes to infinity. The starting point is the equation

t t 0 0
G-zt to) = J dt’ f dt’ f dt”’ f dt”
to ty —%© —%
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DE-FG03-96ERA455098, the NSF under Grant Nos. DMR-ysing the Wick theorem, we perform the contractions,
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SFB 608. closest ta, see Fig. 4. After a substitution front, to y,; the

integral is elementary with the result
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t
G, ALty :f dt;,G, +(t,t)G_ _(t,ty) X f(2t) G, A1, to),
to

<t + 3 —v
) Gu-e(tto) G zdtito) = 5(1 - e 30720,
T to
= 2. Propagator G,_ ,_
<% &% o WY o S o WU From the equations of motiof26) one extracts
< T Y Fan N ' - G- (ttp)
t tO t o0 t” , _
. =1 _f dt’f dt//f dtm< 77_(;[/)\/\40('://) 7]+(t///)>
to - tO
<—+—d'fb 1t it &_L t Y = o
GZZJZZ(t‘],tZ) — f dt/J dtHJ dt///<"7']+(t/)\/\ft (tll)’;’_(t///)>
4—'—& Q 2 it 7@ N L to - to °
t t1 t2 t() t [ " t 0 TN
+ dt’ dt’ dat” | dt’ dt”’ dt”
FIG. 5. G,_ ,_ consists of diagrams with excess vertices as first Jto f_x fto fto J_x Jto
and last vertices on both time legs. There are disconnected diagrams , L
(where the “ladder” has no rungand connected diagrantehere ><(77_(t’)Mo(t”)77+(t”’)77+(t’)\N{O(t”)77_(t”’)).

the ladder has rungsln the second case, the excess vertices are are _ _
connected by rungs ds andt,, and betweer; andt, additional ~ After averaging, the sum over the ladder diagrams can be
pairs can be contracted as®),,t;,ty). captured by a Bethe-Salpeter equation:
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t h G- _4(t,tp)
Gio s (t,1) = G, L(Lt)G_ (L,1o) J dt, f dt, E v e
o T = f dt’ f dt’ f dt” f dt f v f dr'(
X Gy +(t,1) G (4,1 F(111) G, A1y, 1) F(2ty) to o to t - to
%Gt 1) G- (o), X7 W ()7 (1) 7 (€)W (€ 7E7)).

The configuration of the excess vertices necessitates at least
two rungs at times$; andt, (see. Fig. & The contractions in

wheret; is the time of the last rung arigdthe time of the first between again sum up B,,,(t,,t), leading to

rung (see Fig. 3 All contractions in between sum up to
G,;z411,t). Since the latter propagator is explicitly known, G- _(t,tp)
the integrals can be performed directly, yielding E3gd).

t ty
= f dtlf dtZG+,+(t1tl)G—,—(t1tl)f(th)GZZ,ZZ
fo to

3. Propagator G,_ _,
Pagd : X (t, 1) f (1) Gy (b2, 1)) G- (o),

Similar to the previous propagator, one now has and eventually to Eq.38e).
1L. D. Landau, Phys. Z. SowjetunioB, 46 (1932. Hamiltonian(1). Note that the diabatic energies are an odd func-
2C. Zener, Proc. R. Soc. London, Ser.¥87, 696 (1932. tion of time, whereas the adiabatic energies are an even function
3E. C. G. Stiickelberg, Helv. Phys. Act 369 (1932. of time.
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adiabatically connected to the statd at t=o (avoided level 6V, L. Pokrovsky and N. A. Sinitsyn, Phys. Rev. B7, 144303
crossing. Analogously,| 1) att=—o evolved “diabatically” into ' '

2 . ; ) . (2003.
¥ gtt-w (crossing the second dlal?‘atlc I“e)zeTh(_e evolution ”M. Nishino, K. Saito, and S. Miyashita, Phys. Rev.85, 014403
matrix (2) connects the values of the “slow amphtuc@?,vl(t) (2002

which are defined by representing the state vector in a form 8 .
=C{(t)e‘iq’7(t)\T>+Cj(t)e“¢’i(‘>|w. The dynamic phase®, (1) V. L. Pokrovsky and N. A. Sinitsyn, Phys. Rev. B9, 104414

:(1/ﬁ)f5dt’ET”l(t’) depend on the diabatic eigenstates of the (2004

014416-11



