16 research outputs found

    Different metastasis promotive potency of small G-proteins RalA and RalB in in vivo hamster tumor model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previously we have shown that oncogenic Ha-Ras stimulated <it>in vivo </it>metastasis through RalGEF-Ral signaling. RalA and RalB are highly homologous small G proteins belonging to Ras superfamily. They can be activated by Ras-RalGEF signaling pathway and influence cellular growth and survival, motility, vesicular transport and tumor progression in humans and in animal models. Here we first time compared the influence of RalA and RalB on tumorigenic, invasive and metastatic properties of RSV transformed hamster fibroblasts.</p> <p>Methods</p> <p>Retroviral vectors encoding activated forms or effector mutants of RalA or RalB proteins were introduced into the low metastatic HET-SR cell line. Tumor growth and spontaneous metastatic activity (SMA) were evaluated on immunocompetent hamsters after subcutaneous injection of cells. The biological properties of cells, including proliferation, clonogenicity, migration and invasion were determined using MTT, wound healing, colony formation and Boyden chamber assays respectively. Protein expression and phosphorylation was detected by Westen blot analysis. Extracellular proteinases activity was assessed by substrate-specific zymography.</p> <p>Results</p> <p>We have showed that although both Ral proteins stimulated SMA, RalB was more effective in metastasis stimulation <it>in vivo </it>as well as in potentiating of directed movement and invasion <it>in vitro</it>. Simultaneous expression of active RalA and RalB didn't give synergetic effect on metastasis formation. RalB activity decreased expression of Caveolin-1, while active RalA stimulated MMP-1 and uPA proteolytic activity, as well as CD24 expression. Both Ral proteins were capable of Cyclin D1 upregulation, JNK1 kinase activation, and stimulation of colony growth and motility. Among three main RalB effectors (RalBP1, exocyst complex and PLD1), PLD1 was essential for RalB-dependent metastasis stimulation.</p> <p>Conclusions</p> <p>Presented results are the first data on direct comparison of RalA and RalB impact as well as of RalA/RalB simultaneous expression influence on <it>in vivo </it>cell metastatic activity. We showed that RalB activation significantly more than RalA stimulates SMA. This property correlates with the ability of RalB to stimulate <it>in vitro </it>invasion and serum directed cell movement. We also found that RalB-PLD1 interaction is necessary for the acquisition of RalB-dependent high metastatic cell phenotype. These findings contribute to the identification of molecular mechanisms of metastasis and tumor progression.</p

    Π‘ΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ ΠΊ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡŽ дуплСксов ΠΊΠ°ΠΊ Ρ„Π°ΠΊΡ‚ΠΎΡ€ Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ распрСдСлСния ΠΌΠΈΠΊΡ€ΠΎΠ ΠΠš

    Get PDF
    Background. The regulation of the content of mature microRNAs (miRNAs) in different cell compartments – the nucleus (N) and the cytoplasm (C) – makes it possible to control their availability for participation in RNA-mediated interference processes. Structurally different miRNAs, processed from different precursors (pre-miRNA), can form duplexes between molecules containing complementary sequences. The appearance of such duplexes can be considered as one of the mechanisms of miRNA activity regulation in respect to their target mRNAs. Objectives. Analysis of the miRNA distribution between nucleus and cytoplasm depending on the energy of duplex formation. Materials and methods. Data on the content of different miRNAs in the nucleus and cytoplasm in two cell lines of different origin: 5-8F of human nasopharyngeal carcinoma (NPC) and postmitotic neurons of the cerebral cortex of rat – has been used. The miRNA sequences used for analysis were taken from the miRBase database, version 22. Bioinformatic analysis of miRNA sequences for detection of molecules capable of forming miRNA duplexes and determination of their minimal free energy (MFE) of formation was carried out with the help of programs: RegRNA, version 2.0, and RNAup.Β Results. For the first time, a comparative analysis of the intracellular distribution N/C of different miRNAs depending on the energy of duplex formation was performed. Results of bioinformatic analysis of miRNA sequencing in 5-8F cells of human nasopharyngeal carcinoma showed that miRNAs capable of forming high-energy, i. e. more stable, duplexes, accumulate in the cytoplasm, while miRNAs forming low-energy duplexes have a larger N/C value, i. e. the level of these miRNAs is higher in the nucleus. In addition, we show that N/C distribution of miRNAs capable of forming high-energy duplexes is independent from the presence of certain short motifs, that are supposedly associated with their nuclear localization. Conclusion. The revealed enrichment of the pool of cytoplasmic miRNAs by molecules capable of forming more energetically stable duplexes may represent an additional mechanism of regulating miRNA activity in respect to their target mRNAs due to the sequestration of miRNA duplexes in the cytoplasm preventing miRNA interaction with mRNAs.Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅. РСгуляция содСрТания Π·Ρ€Π΅Π»Ρ‹Ρ… ΠΌΠΈΠΊΡ€ΠΎΠ ΠΠš (миРНК) Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΊΠΎΠΌΠΏΠ°Ρ€Ρ‚ΠΌΠ΅Π½Ρ‚Π°Ρ… ΠΊΠ»Π΅Ρ‚ΠΊΠΈ – ядрС (N) ΠΈ Ρ†ΠΈΡ‚ΠΎΠΏΠ»Π°Π·ΠΌΠ΅ (C) – позволяСт ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΈΡ… участия Π² процСссах РНК-опосрСдованной ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠΈ. Π Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ ΠΏΠΎ структурС миРНК, процСссинг ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… осущСствляСтся с Ρ€Π°Π·Π½Ρ‹Ρ… ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²Π΅Π½Π½ΠΈΠΊΠΎΠ² (ΠΏΡ€Π΅-миРНК), ΠΌΠΎΠ³ΡƒΡ‚ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Ρ‹Π²Π°Ρ‚ΡŒ дуплСксы ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Π°ΠΌΠΈ ΠΏΡ€ΠΈ Π½Π°Π»ΠΈΡ‡ΠΈΠΈ Π² Π½ΠΈΡ… ΠΊΠΎΠΌΠΏΠ»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ€Π½Ρ‹Ρ… ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ. Π€ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ‚Π°ΠΊΠΈΡ… дуплСксов ΠΌΠΎΠΆΠ΅Ρ‚ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒΡΡ ΠΊΠ°ΠΊ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² рСгуляции активности миРНК Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ ΠΈΡ… Ρ‚Π°Ρ€Π³Π΅Ρ‚Π½Ρ‹Ρ… ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½Ρ‹Ρ… РНК (мРНК). ЦСль исслСдования – Π°Π½Π°Π»ΠΈΠ· распрСдСлСния Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… миРНК ΠΌΠ΅ΠΆΠ΄Ρƒ ядром ΠΈ Ρ†ΠΈΡ‚ΠΎΠΏΠ»Π°Π·ΠΌΠΎΠΉ Π² зависимости ΠΎΡ‚ энСргии образования дуплСксов. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠΌ для исслСдований послуТили Π΄Π°Π½Π½Ρ‹Π΅ ΠΎ содСрТании Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… миРНК Π² ядрС ΠΈ Ρ†ΠΈΡ‚ΠΎΠΏΠ»Π°Π·ΠΌΠ΅ Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… 2 Π»ΠΈΠ½ΠΈΠΉ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠ³ΠΎ происхоТдСния: 5-8F Π½Π°Π·ΠΎΡ„Π°Ρ€ΠΈΠ½Π³Π΅Π°Π»ΡŒΠ½ΠΎΠΉ ΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΡ‹ (nasopharyngeal carcinoma, NPC) Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΈ постмитотичСских Π½Π΅ΠΉΡ€ΠΎΠ½ΠΎΠ² ΠΊΠΎΡ€Ρ‹ Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° сСрой крысы. ΠŸΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ миРНК, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Π΅ для Π°Π½Π°Π»ΠΈΠ·Π°, Π±Ρ‹Π»ΠΈ взяты ΠΈΠ· Π±Π°Π·Ρ‹ Π΄Π°Π½Π½Ρ‹Ρ… miRBase, вСрсия 22. БиоинформатичСский Π°Π½Π°Π»ΠΈΠ· ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ миРНК для выявлСния ΠΌΠΎΠ»Π΅ΠΊΡƒΠ», способных ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Ρ‹Π²Π°Ρ‚ΡŒ дуплСксы миРНК, ΠΈ опрСдСлСния минимальной свободной энСргии (minimum free energy, MFE) ΠΈΡ… формирования ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ c ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌ RegRNA, вСрсия 2.0, ΠΈ RNAup. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ распрСдСлСния (ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ N/C) Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… миРНК Π² зависимости ΠΎΡ‚ энСргии образования дуплСксов. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ биоинформатичСского Π°Π½Π°Π»ΠΈΠ·Π° Π΄Π°Π½Π½Ρ‹Ρ… сСквСнирования миРНК Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Π»ΠΈΠ½ΠΈΠΈ 5-8F NPC ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ миРНК, способныС ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Ρ‹Π²Π°Ρ‚ΡŒ высокоэнСргСтичСскиС, Ρ‚. Π΅. Π±ΠΎΠ»Π΅Π΅ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½Ρ‹Π΅, дуплСксы, Π½Π°ΠΊΠ°ΠΏΠ»ΠΈΠ²Π°ΡŽΡ‚ΡΡ Π² Ρ†ΠΈΡ‚ΠΎΠΏΠ»Π°Π·ΠΌΠ΅, Π² Ρ‚ΠΎ врСмя ΠΊΠ°ΠΊ низкоэнСргСтичСскиС дуплСксы Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Π΄Π°Π½Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ Π½Π°ΠΊΠ°ΠΏΠ»ΠΈΠ²Π°ΡŽΡ‚ΡΡ Π² ядрС (ΠΈΠΌΠ΅ΡŽΡ‚ большСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ N/C). Π’Π°ΠΊΠΆΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ отсутствиС зависимости распрСдСлСния N/C ΠΎΡ‚ ряда ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΈΡ… ΠΌΠΎΡ‚ΠΈΠ²ΠΎΠ², ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ассоциированных с ядСрной Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠ΅ΠΉ для миРНК, способных ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Ρ‹Π²Π°Ρ‚ΡŒ высокоэнСргСтичСскиС дуплСксы. Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ВыявлСнноС ΠΎΠ±ΠΎΠ³Π°Ρ‰Π΅Π½ΠΈΠ΅ ΠΏΡƒΠ»Π° цитоплазматичСских миРНК ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Π°ΠΌΠΈ, способными ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Ρ‹Π²Π°Ρ‚ΡŒ Π±ΠΎΠ»Π΅Π΅ энСргСтичСски ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½Ρ‹Π΅ дуплСксы, ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡ‚ΡŒ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ рСгуляции активности миРНК Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ ΠΈΡ… Ρ‚Π°Ρ€Π³Π΅Ρ‚Π½Ρ‹Ρ… мРНК (Π·Π° счСт сСквСстирования миРНК Π² Ρ†ΠΈΡ‚ΠΎΠΏΠ»Π°Π·ΠΌΠ΅ Π² составС дуплСксов, ΠΏΡ€Π΅ΠΏΡΡ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΠΈΡŽ миРНК с мРНК)

    ВлияниС экспрСссии CRABP1 Π½Π° ΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°Ρ†ΠΈΡŽ ΠΈ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΊ Ρ€Π΅Ρ‚ΠΈΠ½ΠΎΠ΅Π²ΠΎΠΉ кислотС ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Ρ€Π°ΠΊΠ° ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠ³ΠΎ происхоТдСния

    Get PDF
    Background. Retinoic acid (RA), by modulation of the transcription of a number of retinoid-responsive genes, is involved in the regulation of cell differentiation and proliferation. The mechanisms by which the RA-binding proteins, molecular chaperones CRABP1 and CRABP2 (Cellular Retinoic Acid Proteins-1 and -2), participate in the realization of RA activity, as well as their precise role in tumor progression are still not fully understood. Recent data indicate that functional differences of CRABP proteins with respect to malignization of breast cancer cells could be determined by different sensitivity of tumor cells to RA and with the receptor status of the tumor.Materials and methods. The CRABP1 coding sequence was overexpressed in breast cancer cells without endogenous expression of this protein, with different levels of RA sensitivity and receptor status – SKBR3 (RA-sensitive, ER(–) / HER2(+) cells) and MDA-MB-231 (RA-resistant, triple negative status). The growth of CRABP1(+) derivatives and control cells was evaluated under standard culture conditions and in the presence of various concentrations of RA.Results. The effect of CRABP1 expression in RA-sensitive and RA-resistant breast cancer cells with different receptor status on the growth rate and sensitivity of cells to RA was studied. The expression of CRABP1 in RA-sensitive SKBR3 cells enhances proliferation in the absence of RA and decreases the antiproliferative effect of RA, while in RA-resistant triple-negative MDA-MB-231 cells, the expression of CRABP1 does not affect the studied characteristics.Conclusion. CRABP1 stimulates growth and suppresses the RA-sensitivity of HER2(+) RA-sensitive cells, but does not have a similar effect on highly aggressive triple-negative RA-resistant cells.Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅. РСтиноСвая кислота (РК) Π·Π° счСт модуляции транскрипции ряда рСтиноидрСспонсивных Π³Π΅Π½ΠΎΠ² участвуСт Π² рСгуляции процСссов Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΠΈ ΠΈ ΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°Ρ†ΠΈΠΈ. ΠœΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ дСйствия Π±Π΅Π»ΠΊΠΎΠ²-ΡˆΠ°ΠΏΠ΅Ρ€ΠΎΠ½ΠΎΠ², ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰ΠΈΡ… РК, CRABP1 ΠΈ CRABP2 (Cellular Retinoic Acid Proteins-1 ΠΈ -2), Π² Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ активности РК, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΈΡ… участиС Π² ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠΉ прогрСссии Π΄ΠΎ сих ΠΏΠΎΡ€ ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ нСясны. ПослСдниС Π΄Π°Π½Π½Ρ‹Π΅ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‚ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ различия ΠΌΠ΅ΠΆΠ΄Ρƒ Π±Π΅Π»ΠΊΠ°ΠΌΠΈ CRABP Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ ΠΌΠ°Π»ΠΈΠ³Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Ρ€Π°ΠΊΠ° ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹ (Π ΠœΠ–) ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ связаны с Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΊ РК ΠΈ с Ρ€Π°Π·Π½Ρ‹ΠΌ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π½Ρ‹ΠΌ статусом ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠšΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‰ΡƒΡŽ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ CRABP1 гипСрэкспрСссировали Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Π ΠœΠ– с отсутствиСм эндогСнной экспрСссии Π΄Π°Π½Π½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ°, Ρ€Π°Π·Π½Ρ‹ΠΌ ΡƒΡ€ΠΎΠ²Π½Π΅ΠΌ РК-Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΈ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π½Ρ‹ΠΌ статусом – Π»ΠΈΠ½ΠΈΠΈ SKBR3 (РК-Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅, ER(–) / HER2(+)) ΠΈ MDA-MB-231 (РК-рСзистСнтныС, Ρ‚Ρ€ΠΈΠΆΠ΄Ρ‹ Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½Ρ‹ΠΉ статус). ΠžΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈ рост ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… CRABP1(+)- ΠΈ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Ρ‹Ρ… сублиний ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π² стандартных условиях ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ ΠΈ Π² присутствии Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΉ РК.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ИсслСдовано влияниС экспрСссии CRABP1 Π² Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΈ рСзистСнтных ΠΊ РК ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Π ΠœΠ– с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π½Ρ‹ΠΌ статусом Π½Π° Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΡƒ ΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°Ρ†ΠΈΠΈ ΠΈ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΊ РК. Показано, Ρ‡Ρ‚ΠΎ экспрСссия CRABP1 Π² Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊ РК ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… SKBR3 стимулируСт ΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°Ρ†ΠΈΡŽ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π² отсутствиС РК ΠΈ сниТаСт Π°Π½Ρ‚ΠΈΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½Ρ‹ΠΉ эффСкт РК, Π² Ρ‚ΠΎ врСмя ΠΊΠ°ΠΊ Π² рСзистСнтных ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… MDA-MB-231 экспрСссия CRABP1 Π½Π΅ влияСт Π½Π° исслСдуСмыС характСристики.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. CRABP1 стимулируСт ΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΈ сниТаСт Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΊ РК HER2(+)-ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π ΠœΠ–, Π½ΠΎ Π½Π΅ ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½ΠΎΠ³ΠΎ дСйствия Π½Π° высокоагрСссивныС Ρ‚Ρ€ΠΈΠΆΠ΄Ρ‹ Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ, рСзистСнтныС ΠΊ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡŽ РК

    Π Π΅Π·ΠΈΡΡ‚Π΅Π½Ρ‚Π½ΠΎΡΡ‚ΡŒ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Ρ€Π°ΠΊΠ° ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹ ΠΊ ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ трансрСтиноСвой кислотС ассоциирована со сниТСниСм базального уровня экспрСссии ядСрного Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π° RARΞ± ΠΈ ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΈ экспрСссии Ρ†ΠΈΡ‚ΠΎΡ…Ρ€ΠΎΠΌΠΎΠ² CYP26A1 ΠΈ CYP26Π’1

    Get PDF
    Introduction. Retinoic acid (RA) is a key regulator of cell differentiation and a critical player in such systemic processes in the body as embryonic development, immune system cell maturation and functioning, tissue remodeling and several others. This compound displays an antitumor activity due to its ability to stimulate differentiation, induce apoptosisΒ  and inhibit proliferation of malignant cells. The rapid acquisition of resistance to RA and its analogues by solid tumor cells is one of the main problems limiting the widespread use of retinoids in the therapy of malignant neoplasms. The mechanisms of RA-resistance are still poorly understood.The study objective – assessment of the relationship between the basal expression level of the nuclear RARΞ± receptor and the RA-induced expression of the cytochromes CYP26A1and CYP26B1 with the resistance of breast cancer cells to the action of all-trans-retinoic acid.Materials and methods. Cell lines were cultured, the sensitivity of breast cancer cells to the action of fully trans-retinoic acid, RNA isolation, reverse transcription reaction and real-time polymerase chain reaction were analyzed).Results. In present study, using an experimental model represented by 9 breast cancer cell lines with different level of sensitivity to RA, we showed that the expression of the RA nuclear receptor RARΞ±, as well as the level of mRNA induction of CYP26A1 and CYP26B1 cytochromes in response to RA treatment correlate with RA-sensitivity.Conclusion. Thus, a decrease of RARΞ± expression as well as the reduced ability to catabolize RA are factors associated with RA-resistance of breast cancer cells.Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅. РСтиноСвая кислота (РК) являСтся ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· ΠΊΠ»ΡŽΡ‡Π΅Π²Ρ‹Ρ… рСгуляторов Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΈ ваТнСйшим участником Ρ‚Π°ΠΊΠΈΡ… систСмных процСссов Π² ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ΅, ΠΊΠ°ΠΊ ΡΠΌΠ±Ρ€ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅, созрСваниС ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΈΠΌΠΌΡƒΠ½Π½ΠΎΠΉ систСмы, Ρ€Π΅ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ‚ΠΊΠ°Π½Π΅ΠΉ ΠΈ ряд Π΄Ρ€ΡƒΠ³ΠΈΡ…. Π­Ρ‚ΠΎ соСдинСниС ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠΉ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ благодаря своСй способности ΡΡ‚ΠΈΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΡƒ, ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π°ΠΏΠΎΠΏΡ‚ΠΎΠ· ΠΈ ΠΏΠΎΠ΄Π°Π²Π»ΡΡ‚ΡŒ ΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°Ρ†ΠΈΡŽ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ злокачСствСнных Π½ΠΎΠ²ΠΎΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ. БыстроС ΠΏΡ€ΠΈΠΎΠ±Ρ€Π΅Ρ‚Π΅Π½ΠΈΠ΅ рСзистСнтности ΠΊ РК ΠΈ Π΅Π΅ Π°Π½Π°Π»ΠΎΠ³Π°ΠΌ ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ солидных ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ являСтся ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· основных ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ… ΡˆΠΈΡ€ΠΎΠΊΠΎΠ΅ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ СстСствСнных ΠΈ синтСтичСских Ρ€Π΅Ρ‚ΠΈΠ½ΠΎΠΈΠ΄ΠΎΠ² Π² Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ злокачСствСнных Π½ΠΎΠ²ΠΎΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ. ΠœΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ развития Π΄Π°Π½Π½ΠΎΠΉ рСзистСнтности ΠΎΡΡ‚Π°ΡŽΡ‚ΡΡ Π΄ΠΎ сих ΠΏΠΎΡ€ малопонятными.ЦСль исслСдования – ΠΎΡ†Π΅Π½ΠΊΠ° связи уровня базальной экспрСссии ядСрного Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π° RARΞ± ΠΈ РК-ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ экспрСссии Ρ†ΠΈΡ‚ΠΎΡ…Ρ€ΠΎΠΌΠΎΠ² CYP26A1 ΠΈ CYP26B1 с Ρ€Π΅Π·ΠΈΡΡ‚Π΅Π½Ρ‚Π½ΠΎΡΡ‚ΡŒΡŽ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Ρ€Π°ΠΊΠ° ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹ ΠΊ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡŽ ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ трансрСтиноСвой кислоты.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Π»ΠΈΠ½ΠΈΠΉ, Π°Π½Π°Π»ΠΈΠ· Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Ρ€Π°ΠΊΠ° ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹ ΠΊ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡŽ ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ трансрСтиноСвой кислоты, Π²Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ РНК, обратная транскрипция ΠΈ полимСразная цСпная рСакция Π² Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π’Β Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ с использованиСм ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰Π΅ΠΉ 9 Π»ΠΈΠ½ΠΈΠΉ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Ρ€Π°ΠΊΠ° ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹, Ρ€Π°Π·Π»ΠΈΡ‡Π°ΡŽΡ‰ΠΈΡ…ΡΡ ΠΏΠΎ ΡƒΡ€ΠΎΠ²Π½ΡŽ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΊ РК, ΠΌΡ‹ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ экспрСссия ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½ΠΎΠΉ РНК Π³Π΅Π½Π° ядСрного Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π° РК, RARΞ±, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΈ ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½ΠΎΠΉ РНК Π³Π΅Π½ΠΎΠ² Ρ†ΠΈΡ‚ΠΎΡ…Ρ€ΠΎΠΌΠΎΠ² CYP26A1 ΠΈ CYP26Π’1 Π² ΠΎΡ‚Π²Π΅Ρ‚ Π½Π° ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΡƒ РК ΠΊΠΎΡ€Ρ€Π΅Π»ΠΈΡ€ΡƒΡŽΡ‚ с РК-Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, сниТСниС экспрСссии RARΞ± ΠΈ способности ΠΊΠ°Ρ‚Π°Π±ΠΎΠ»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ РК ΡΠ²Π»ΡΡŽΡ‚ΡΡ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ, ассоциированными с РК-Ρ€Π΅Π·ΠΈΡΡ‚Π΅Π½Ρ‚Π½ΠΎΡΡ‚ΡŒΡŽ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Ρ€Π°ΠΊΠ° ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹

    ВлияниС Π½ΠΎΠΊΠ΄Π°ΡƒΠ½Π° ΠΊΠ°Π²Π΅ΠΎΠ»ΠΈΠ½Π°-1 Π½Π° Π±Π΅Π»ΠΊΠΎΠ²Ρ‹ΠΉ состав экстраклСточных Π²Π΅Π·ΠΈΠΊΡƒΠ», сСкрСтируСмых ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ Π½Π΅ΠΌΠ΅Π»ΠΊΠΎΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ Ρ€Π°ΠΊΠ° Π»Π΅Π³ΠΊΠΈΡ…

    Get PDF
    Background. Recent data show evidence that lipid rafts (LR) proteins could be involved in the formation of exosomes and the sorting of proteins that make up the exosomal cargo. Such data are available for flotillins, structural and functional components of flatted rafts. The presence of the main component of caveolar rafts, caveolin-1 (Cav-1), has been shown in exosomes produced by some cancer cells; however, its possible participation in the regulation of the protein composition of exosomes has not been studied previously.Materials and methods. Knockdown of Cav-1 by transduction of a lentiviral vector expressing precursors of short hairpin ribonucleic acid to Cav-1; isolation (by ultracentrifugation) and analysis (transmission electron microscopy, nanoparticle tracking analysis) of extracellular vesicles (EVs) from non-small cell lung cancer cells (NSCLC) H1299; analysis of proteins in cells and in EVs by immunoblotting.Results. Analysis of the effect of Cav-1 expression on the composition of EV proteins associated with exosome biogenesis revealed a decrease in the level of Alix and TSG101, an increase in the level of LR proteins and the absence of changes in the level of tetraspanin CD9.Β Conclusion. The obtained data demonstrate a Cav-1-dependent changes in the composition of EVs, indicating aΒ change in the ratio of vesicles formed by the various molecular mechanisms.Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅. Π”Π°Π½Π½Ρ‹Π΅ исслСдований послСдних Π»Π΅Ρ‚ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‚ ΠΎΒ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎΒ Π±Π΅Π»ΠΊΠΈ, входящиС в состав Π»ΠΈΠΏΠΈΠ΄Π½Ρ‹Ρ… Ρ€Π°Ρ„Ρ‚ΠΎΠ², ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ задСйствованы Π²Β Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ экзосом ΠΈΒ ΠΎΡ‚Π±ΠΎΡ€Π΅ Π±Π΅Π»ΠΊΠΎΠ², входящих в состав экзосомального ΠΊΠ°Ρ€Π³ΠΎ. Π’Π°ΠΊΠΈΠ΅ Π΄Π°Π½Π½Ρ‹Π΅ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ для флотиллинов, структурно-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² плоских Ρ€Π°Ρ„Ρ‚ΠΎΠ². Для кавСолина-1 (Cav-1), основного ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π° кавСолярных Ρ€Π°Ρ„Ρ‚ΠΎΠ², ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ присутствиС в экзосомах Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ, ΠΎΠ΄Π½Π°ΠΊΠΎ Π΅Π³ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠ΅ участиС в рСгуляции Π±Π΅Π»ΠΊΠΎΠ²ΠΎΠ³ΠΎ состава экзосом Ρ€Π°Π½Π΅Π΅ нС исслСдовалось.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈΒ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Нокдаун Cav-1 ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ трансдукции лСнтивирусного Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²Π΅Π½Π½ΠΈΠΊΠΎΠ² ΠΌΠ°Π»Ρ‹Ρ… ΡˆΠΏΠΈΠ»Π΅Ρ‡Π½Ρ‹Ρ… Ρ€ΠΈΠ±ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΈΠ½ΠΎΠ²Ρ‹Ρ… кислот ΠΊΒ Cav-1. ЭкстраклСточныС Π²Π΅Π·ΠΈΠΊΡƒΠ»Ρ‹ (Π­ΠšΠ’) выдСляли ΠΈΠ·Β ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π»ΠΈΠ½ΠΈΠΈ Н1299 Π½Π΅ΠΌΠ΅Π»ΠΊΠΎΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ Ρ€Π°ΠΊΠ° Π»Π΅Π³ΠΊΠΈΡ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΡƒΠ»ΡŒΡ‚Ρ€Π°Ρ†Π΅Π½Ρ‚Ρ€ΠΈΡ„ΡƒΠ³ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ. ΠŸΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Ρ‹ Π­ΠšΠ’ Π²Π΅Ρ€ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ ΡΒ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ трансмиссионной элСктронной микроскопии (Π°Π½Π°Π»ΠΈΠ· Ρ€Π°Π·ΠΌΠ΅Ρ€Π° ΠΈΒ ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΈΠΈ) ΠΈΒ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π°Π½Π°Π»ΠΈΠ·Π° Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΉ двиТСния наночастиц (срСднСразмСрноС распрСдСлСниС и концСнтрация). Для анализа ΡΠΊΠ·ΠΎΡΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ² ΠΈΒ Cav-1 Π²Β ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… ΠΈΒ Π­ΠšΠ’ примСняли ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΈΠΌΠΌΡƒΠ½ΠΎΠ±Π»ΠΎΡ‚Ρ‚ΠΈΠ½Π³Π°.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Анализ влияния экспрСссии Cav-1 на состав Π±Π΅Π»ΠΊΠΎΠ² Π­ΠšΠ’, ассоциированных с биогСнСзом экзосом, выявил сниТСниС уровня Alix ΠΈΒ TSG101, ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ уровня Π±Π΅Π»ΠΊΠΎΠ² Π»ΠΈΠΏΠΈΠ΄Π½Ρ‹Ρ… Ρ€Π°Ρ„Ρ‚ΠΎΠ² и отсутствиС ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ уровня тСтраспанина CD9.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ Π΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΡƒΡŽΡ‚ Cav-1-зависимоС ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ состава Π­ΠšΠ’, ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π΅ ΠΎΠ± ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ Π²Π΅Π·ΠΈΠΊΡƒΠ», ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π½Ρ‹Ρ… с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… молСкулярных ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ².

    НСканоничСская Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Ρ€Π΅Ρ‚ΠΈΠ½ΠΎΠ΅Π²ΠΎΠΉ кислоты Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π· Π² трансформированных ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠ³ΠΎ происхоТдСния

    Get PDF
    Background. The non-canonical activity of retinoic acid (RA) was discovered relatively recently and consists in the rapid activation of intracellular signaling pathways by the mechanisms not related to the transcriptional activity of the RA nuclear receptors. Separate data suggest that this activity can stimulate the processes of malignancy and contribute to the formation of tumor cell resistance to RA as a therapeutic agent. However, little is known about the mechanisms of this activity. It is also unclear how universal this effect is; does the RA-dependent activation of different signaling protein kinases occur in the same cells, and whether activation of these kinases is interrelated.Materials and methods: cultivation of non-small cell lung cancer cells and neuroblastoma cells under standard conditions and with incubation with all-trans retinoic acid (ATRA); immunoblotting.Results. Here we studied the effect of ATRA on the activation of Akt and Erk1/2 protein kinases depending on the incubation time. The analysis revealed RA-dependent activation of both kinases in all studied non-small cell lung cancer and neuroblastoma cell lines. Activation of Akt and Erk1/2 occurred at five minutes of incubation, which corresponds to the non-transcriptional (non-canonical) activity of the RA, however, further activation kinetics of the two kinases differed essentially.Conclusion. We found that ATRA causes rapid activation of Erk1/2 and Akt protein kinases in both non-small cell lung cancer and neuroblastoma cells. The differences in the kinetics of RA-dependent stimulation of these two kinases suggest that their activation is mediated by independent mechanisms.Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅. НСканоничСская Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Ρ€Π΅Ρ‚ΠΈΠ½ΠΎΠ΅Π²ΠΎΠΉ кислоты (РК) ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Π° ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π½Π΅Π΄Π°Π²Π½ΠΎ ΠΈ Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² быстрой Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… ΡΠΈΠ³Π½Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡƒΡ‚Π΅ΠΉ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ², Π½Π΅ связанных с транскрипционной Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ ядСрных Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ² РК. ΠžΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‚ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ нСканоничСская Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΌΠΎΠΆΠ΅Ρ‚ ΡΡ‚ΠΈΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ процСссы ΠΌΠ°Π»ΠΈΠ³Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΈ ΡƒΡ‡Π°ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ Π² Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ рСзистСнтности ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΊ тСрапСвтичСскому Π²ΠΎΠ·Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡŽ РК. Однако ΠΎ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ°Ρ… нСканоничСской активности извСстно достаточно ΠΌΠ°Π»ΠΎ. НСпонятно, насколько этот эффСкт унивСрсалСн, происходит Π»ΠΈ РК-зависимая активация Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΡΠΈΠ³Π½Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π· Π² ΠΎΠ΄Π½ΠΈΡ… ΠΈ Ρ‚Π΅Ρ… ΠΆΠ΅ ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ…, ΠΈ насколько активация этих ΠΊΠΈΠ½Π°Π· взаимосвязана.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹: ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π½Π΅ΠΌΠ΅Π»ΠΊΠΎΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ Ρ€Π°ΠΊΠ° Π»Π΅Π³ΠΊΠΎΠ³ΠΎ ΠΈ нСйробластомы Π² стандартных условиях ΠΈ ΠΏΡ€ΠΈ ΠΈΠ½ΠΊΡƒΠ±Π°Ρ†ΠΈΠΈ с ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ транс-Ρ€Π΅Ρ‚ΠΈΠ½ΠΎΠ΅Π²ΠΎΠΉ кислотой (all-trans retinoic acid, ATRA); ΠΈΠΌΠΌΡƒΠ½ΠΎΠ±Π»ΠΎΡ‚Ρ‚ΠΈΠ½Π³.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ исслСдовали влияниС ATRA Π½Π° Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΡŽ ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π· Akt ΠΈ Erk1 / 2 Π² зависимости ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΈΠ½ΠΊΡƒΠ±Π°Ρ†ΠΈΠΈ. Анализ выявил РК-Π·Π°Π²ΠΈΡΠΈΠΌΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΡŽ ΠΎΠ±Π΅ΠΈΡ… ΠΊΠΈΠ½Π°Π· Π²ΠΎ всСх исслСдуСмых линиях ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π½Π΅ΠΌΠ΅Π»ΠΊΠΎΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ Ρ€Π°ΠΊΠ° Π»Π΅Π³ΠΊΠΎΠ³ΠΎ ΠΈ нСйробластомы. Активация ΠΊΠ°ΠΊ Akt, Ρ‚Π°ΠΊ ΠΈ Erk1 / 2 Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π»Π° ΠΏΡ€ΠΈ 5 ΠΌΠΈΠ½ ΠΈΠ½ΠΊΡƒΠ±Π°Ρ†ΠΈΠΈ, Ρ‡Ρ‚ΠΎ соотвСтствуСт нСтранскрипционной (нСканоничСской) активности РК, ΠΎΠ΄Π½Π°ΠΊΠΎ дальнСйшая ΠΊΠΈΠ½Π΅Ρ‚ΠΈΠΊΠ° Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ Π΄Π²ΡƒΡ… ΠΊΠΈΠ½Π°Π· сущСствСнно Ρ€Π°Π·Π»ΠΈΡ‡Π°Π»Π°ΡΡŒ.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠœΡ‹ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ ATRA Π²Ρ‹Π·Ρ‹Π²Π°Π΅Ρ‚ ΠΊΡ€Π°Ρ‚ΠΊΠΎΡΡ€ΠΎΡ‡Π½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΡŽ ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π· Erk1 / 2 ΠΈ Akt Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Π½Π΅ΠΌΠ΅Π»ΠΊΠΎΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ Ρ€Π°ΠΊΠ° Π»Π΅Π³ΠΊΠΎΠ³ΠΎ ΠΈ нСйробластомы. Различия Π² ΠΊΠΈΠ½Π΅Ρ‚ΠΈΠΊΠ΅ РК-зависимой стимуляции Π΄Π²ΡƒΡ… ΠΊΠΈΠ½Π°Π· ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‚ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΠΈΡ… активация рСализуСтся с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ нСзависимых ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ²

    Ability to form duplexes as a factor of intracellular microRNA distribution

    Get PDF
    Background. The regulation of the content of mature microRNAs (miRNAs) in different cell compartments – the nucleus (N) and the cytoplasm (C) – makes it possible to control their availability for participation in RNA-mediated interference processes. Structurally different miRNAs, processed from different precursors (pre-miRNA), can form duplexes between molecules containing complementary sequences. The appearance of such duplexes can be considered as one of the mechanisms of miRNA activity regulation in respect to their target mRNAs. Objectives. Analysis of the miRNA distribution between nucleus and cytoplasm depending on the energy of duplex formation. Materials and methods. Data on the content of different miRNAs in the nucleus and cytoplasm in two cell lines of different origin: 5-8F of human nasopharyngeal carcinoma (NPC) and postmitotic neurons of the cerebral cortex of rat – has been used. The miRNA sequences used for analysis were taken from the miRBase database, version 22. Bioinformatic analysis of miRNA sequences for detection of molecules capable of forming miRNA duplexes and determination of their minimal free energy (MFE) of formation was carried out with the help of programs: RegRNA, version 2.0, and RNAup.Β Results. For the first time, a comparative analysis of the intracellular distribution N/C of different miRNAs depending on the energy of duplex formation was performed. Results of bioinformatic analysis of miRNA sequencing in 5-8F cells of human nasopharyngeal carcinoma showed that miRNAs capable of forming high-energy, i. e. more stable, duplexes, accumulate in the cytoplasm, while miRNAs forming low-energy duplexes have a larger N/C value, i. e. the level of these miRNAs is higher in the nucleus. In addition, we show that N/C distribution of miRNAs capable of forming high-energy duplexes is independent from the presence of certain short motifs, that are supposedly associated with their nuclear localization. Conclusion. The revealed enrichment of the pool of cytoplasmic miRNAs by molecules capable of forming more energetically stable duplexes may represent an additional mechanism of regulating miRNA activity in respect to their target mRNAs due to the sequestration of miRNA duplexes in the cytoplasm preventing miRNA interaction with mRNAs

    Effect of CRABP1 expression on the proliferation and the sensitivity to retionoic acid of breast cancer cells of different origin

    Get PDF
    Background. Retinoic acid (RA), by modulation of the transcription of a number of retinoid-responsive genes, is involved in the regulation of cell differentiation and proliferation. The mechanisms by which the RA-binding proteins, molecular chaperones CRABP1 and CRABP2 (Cellular Retinoic Acid Proteins-1 and -2), participate in the realization of RA activity, as well as their precise role in tumor progression are still not fully understood. Recent data indicate that functional differences of CRABP proteins with respect to malignization of breast cancer cells could be determined by different sensitivity of tumor cells to RA and with the receptor status of the tumor.Materials and methods. The CRABP1 coding sequence was overexpressed in breast cancer cells without endogenous expression of this protein, with different levels of RA sensitivity and receptor status – SKBR3 (RA-sensitive, ER(–) / HER2(+) cells) and MDA-MB-231 (RA-resistant, triple negative status). The growth of CRABP1(+) derivatives and control cells was evaluated under standard culture conditions and in the presence of various concentrations of RA.Results. The effect of CRABP1 expression in RA-sensitive and RA-resistant breast cancer cells with different receptor status on the growth rate and sensitivity of cells to RA was studied. The expression of CRABP1 in RA-sensitive SKBR3 cells enhances proliferation in the absence of RA and decreases the antiproliferative effect of RA, while in RA-resistant triple-negative MDA-MB-231 cells, the expression of CRABP1 does not affect the studied characteristics.Conclusion. CRABP1 stimulates growth and suppresses the RA-sensitivity of HER2(+) RA-sensitive cells, but does not have a similar effect on highly aggressive triple-negative RA-resistant cells

    Non-canonical activity of retinoic acid in relation to the activation of protein kinases in transformed cells of different origin

    Get PDF
    Background. The non-canonical activity of retinoic acid (RA) was discovered relatively recently and consists in the rapid activation of intracellular signaling pathways by the mechanisms not related to the transcriptional activity of the RA nuclear receptors. Separate data suggest that this activity can stimulate the processes of malignancy and contribute to the formation of tumor cell resistance to RA as a therapeutic agent. However, little is known about the mechanisms of this activity. It is also unclear how universal this effect is; does the RA-dependent activation of different signaling protein kinases occur in the same cells, and whether activation of these kinases is interrelated.Materials and methods: cultivation of non-small cell lung cancer cells and neuroblastoma cells under standard conditions and with incubation with all-trans retinoic acid (ATRA); immunoblotting.Results. Here we studied the effect of ATRA on the activation of Akt and Erk1/2 protein kinases depending on the incubation time. The analysis revealed RA-dependent activation of both kinases in all studied non-small cell lung cancer and neuroblastoma cell lines. Activation of Akt and Erk1/2 occurred at five minutes of incubation, which corresponds to the non-transcriptional (non-canonical) activity of the RA, however, further activation kinetics of the two kinases differed essentially.Conclusion. We found that ATRA causes rapid activation of Erk1/2 and Akt protein kinases in both non-small cell lung cancer and neuroblastoma cells. The differences in the kinetics of RA-dependent stimulation of these two kinases suggest that their activation is mediated by independent mechanisms
    corecore