6,819 research outputs found

    Rotating non-asymptotically flat black rings in charged dilaton gravity

    Full text link
    We derive new rotating, non-asymptotically flat black ring solutions in five-dimensional Einstein-Maxwell-dilaton gravity with dilaton coupling constant α=8/3\alpha=\sqrt{8/3} which arises from a six-dimensional Kaluza-Klein theory. As a limiting case we also find new rotating, non-asymptotically flat five-dimensional black holes. The solutions are analyzed and the mass, angular momentum and charge are computed. A Smarr-like relation is found. It is shown that the first law of black hole thermodynamics is satisfied.Comment: 21 pages, LaTeX; v2 a reference added, typos correcte

    D-instanton sums for matter hypermultiplets

    Full text link
    We calculate some non-perturbative (D-instanton) quantum corrections to the moduli space metric of several (n>1) identical matter hypermultiplets for the type-IIA superstrings compactified on a Calabi-Yau threefold, near conifold singularities. We find a non-trivial deformation of the (real) 4n-dimensional hypermultiplet moduli space metric due to the infinite number of D-instantons, under the assumption of n tri-holomorphic commuting isometries of the metric, in the hyper-K"ahler limit (i.e. in the absence of gravitational corrections).Comment: 11 pages, no figure

    Exponentially Large Probabilities in Quantum Gravity

    Full text link
    The problem of topology change transitions in quantum gravity is investigated from the Wheeler-de Witt wave function point of view. It is argued that for all theories allowing wormhole effects the wave function of the universe is exponentially large. If the wormhole action is positive, one can try to overcome this difficulty by redefinition of the inner product, while for the case of negative wormhole action the more serious problems arise.Comment: 9 pages in LaTeX, 4 figures in PostScript, the brief version of this paper is to appear in Proceedings of the XXIV ITEP Winter School of Physic

    Cylindrically symmetric solitons in Einstein-Yang-Mills theory

    Get PDF
    Recently new Einstein-Yang-Mills (EYM) soliton solutions were presented which describe superconducting strings with Kasner asymptotic (hep-th/0610183). Here we study the static cylindrically symmetric SU(2) EYM system in more detail. The ansatz for the gauge field corresponds to superposition of the azimuthal BϕB_\phi and the longitudinal BzB_z components of the color magnetic field. We derive sum rules relating data on the symmetry axis to asymptotic data and show that generic asymptotic structure of regular solutions is Kasner. Solutions starting with vacuum data on the axis generically are divergent. Regular solutions correspond to some bifurcation manifold in the space of parameters which has the low-energy limiting point corresponding to string solutions in flat space (with the divergent total energy) and the high-curvature point where gravity is crucial. Some analytical results are presented for the low energy limit, and numerical bifurcation curves are constructed in the gravitating case. Depending on the parameters, the solution looks like a straight string or a pair of straight and circular strings. The existence of such non-linear superposition of two strings becomes possible due to self-interaction terms in the Yang-Mills action which suppress contribution of the circular string near the polar axis.Comment: 21 pages, 11 figure

    Black hole solutions with dilatonic hair in higher curvature gravity

    Full text link
    A new numerical integration method for examining a black hole structure was realized. Black hole solutions with dilatonic hair of 4D low energy effective SuperString Theory action with Gauss-Bonnet quadratic curvature contribution were studied, using this method, inside and outside the event horizon. Thermodynamical properties of this solution were also studied.Comment: 10 pages, 6 figures, RevTeX, figures in LaTeX or PostScript are avaible upon request via e-mail address: [email protected], Submitted to Phys.Rev.

    Metrics With Vanishing Quantum Corrections

    Full text link
    We investigate solutions of the classical Einstein or supergravity equations that solve any set of quantum corrected Einstein equations in which the Einstein tensor plus a multiple of the metric is equated to a symmetric conserved tensor TμνT_{\mu \nu} constructed from sums of terms the involving contractions of the metric and powers of arbitrary covariant derivatives of the curvature tensor. A classical solution, such as an Einstein metric, is called {\it universal} if, when evaluated on that Einstein metric, TμνT_{\mu \nu} is a multiple of the metric. A Ricci flat classical solution is called {\it strongly universal} if, when evaluated on that Ricci flat metric, TμνT_{\mu \nu} vanishes. It is well known that pp-waves in four spacetime dimensions are strongly universal. We focus attention on a natural generalisation; Einstein metrics with holonomy Sim(n2){\rm Sim} (n-2) in which all scalar invariants are zero or constant. In four dimensions we demonstrate that the generalised Ghanam-Thompson metric is weakly universal and that the Goldberg-Kerr metric is strongly universal; indeed, we show that universality extends to all 4-dimensional Sim(2){\rm Sim}(2) Einstein metrics. We also discuss generalizations to higher dimensions.Comment: 23 page

    S-Wave Scattering of Charged Fermions by a Magnetic Black Hole

    Get PDF
    We argue that, classically, ss-wave electrons incident on a magnetically charged black hole are swallowed with probability one: the reflection coefficient vanishes. However, quantum effects can lead to both electromagnetic and gravitational backscattering. We show that, for the case of extremal, magnetically charged, dilatonic black holes and a single flavor of low-energy charged particles, this backscattering is described by a perturbatively computable and unitary SS-matrix, and that the Hawking radiation in these modes is suppressed near extremality. The interesting and much more difficult case of several flavors is also discussed.Comment: 9p

    Gravity in Brans-Dicke theory with Born-Infeld scalar field and the Pioneer anomaly

    Full text link
    In this paper we discuss a model which can be considered as a generalization of the well-known scalar-tensor Brans-Dicke theory. This model possesses an interesting feature: due to Born-Infeld type non-linearity of the scalar field the properties of the interaction between two test bodies depend significantly on their masses. It is shown that the model can be interesting in view of the Pioneer 10, 11 spacecraft anomaly.Comment: 10 pages, 1 figure, partially changed conten

    Toric G_2 and Spin(7) holonomy spaces from gravitational instantons and other examples

    Get PDF
    Non-compact G_2 holonomy metrics that arise from a T^2 bundle over a hyper-Kahler space are discussed. These are one parameter deformations of the metrics studied by Gibbons, Lu, Pope and Stelle in hep-th/0108191. Seven-dimensional spaces with G_2 holonomy fibered over the Taub-Nut and the Eguchi-Hanson gravitational instantons are found, together with other examples. By considering the Apostolov-Salamon theorem math.DG/0303197, we construct a new example that, still being a T^2 bundle over hyper-Kahler, represents a non trivial two parameter deformation of the metrics studied in hep-th/0108191. We then review the Spin(7) metrics arising from a T^3 bundle over a hyper-Kahler and we find two parameter deformation of such spaces as well. We show that if the hyper-Kahler base satisfies certain properties, a non trivial three parameter deformations is also possible. The relation between these spaces with the half-flat structures and almost G_2 holonomy spaces is briefly discussed.Comment: 27 pages. Typos corrected. Accepted for publication in Commun.Math.Phy
    corecore