49 research outputs found
Fluctuations about the Fubini-Lipatov instanton for false vacuum decay in classically scale invariant models
For a scalar theory whose classical scale invariance is broken by quantum effects, we compute self-consistent bounce solutions and Green's functions. Deriving analytic expressions, we find that the latter are similar to the Green's functions in the archetypal thin-wall model for tunneling between quasi-degenerate vacua. The eigenmodes and eigenspectra are, however, very different. Large infrared effects from the modes of low angular momentum j = 0 and j = 1, which include the approximate dilatational modes for j = 0, are dealt with by a resummation of one loop effects. For a parametric example, this resummation is carried out numerically
Magnetoresistance in semiconductor structures with hopping conductivity: effects of random potential and generalization for the case of acceptor states
We reconsider the theory of magnetoresistance in hopping semiconductors.
First, we have shown that the random potential of the background impurities
affects significantly preexponential factor of the tunneling amplitude which
becomes to be a short-range one in contrast to the long-range one for purely
Coulomb hopping centers. This factor to some extent suppresses the negative
interference magnetoresistance and can lead to its decrease with temperature
decrease which is in agreement with earlier experimental observations. We have
also extended the theoretical models of positive spin magnetoresistance, in
particular, related to a presence of doubly occupied states (corresponding to
the upper Hubbard band) to the case of acceptor states in 2D structures. We
have shown that this mechanism can dominate over classical wave-shrinkage
magnetoresistance at low temperatures. Our results are in semi-quantitative
agreement with experimental data.Comment: 19 pages, 3 figure
Yang-Mills- and D-instantons
In these lectures, which are written at an elementary and pedagogical level,
we discuss general aspects of (single) instantons in SU(N_c) Yang-Mills theory,
and then specialize to the case of N = 4 supersymmetry and the large N_c limit.
We show how to determine the measure of collective coordinates and compute
instanton corrections to certain correlation functions. We then relate this to
D-instantons in type IIB supergravity. By taking the D-instantons to live in an
background, we perform explicit checks of the AdS/CFT
correspondence.Comment: 62 pages, typos corrected, table of contents and references adde
TALL-HERB BOREAL FORESTS ON NORTH URAL
Background. One of the pressing aims of today’s natural resource management is its re-orientation to preserving and restoring ecological functions of ecosystems, among which the function of biodiversity maintenance plays an indicator role. The majority of today’s forests have not retained their natural appearance as the result of long-standing human impact. In this connection, refugia studies are becoming particularly interesting, as they give us an insight into the natural appearance of forests. Materials and methods. Studies were performed in dark conifer forests of the Pechora–Ilych reserve, in the lower reaches of the Bol’shaya Porozhnyaya River in 2013 yr. Vegetation data sampling was done at 50 temporary square plots of a fixed size (100 m2) randomly placed within a forest type. A list of plant species with species abundance was made for each forest layer. The overstorey (or tree canopy layer) was denoted by the Latin letter A. The understorey layer (indicated by the letter B) included tree undergrowth and tall shrubs. Ground vegetation was subdivided into the layers C and D. Layer C (field layer) comprised the herbaceous species (herbs, grasses, sedges) and dwarf shrubs together with low shrubs, tree and shrub seedlings. The height of the field layer was defined by the maximal height of the herbaceous species, ferns, and dwarf shrubs; the height varied from several cm to more than 200 cm in the ‘tall-herb’ forest types. Layer D (bottom layer) included cryptogamic species (bryophytes and lichens). Species abundance in the each layer was usually assessed using the Braun-Blanquet cover scale (Braun-Blanquet 1928). The nomenclature used follows Cherepanov’s (1995) for vascular plants, and Ignatov & Afonina’s (1992). Results. The present article contains descriptions of unique tall-herb boreal forests of European Russia preserved in certain refugia which did not experience prolonged anthropogenic impact or any other catastrophes. Comparative research into species and ecological diversity of typical (anthropogenically transformed) and unique (tall-herb) boreal forests has been conducted. On the basis of the collected field data, a map of the diffuse area for tall-herb boreal forests has been compiled and a set of species characteristic for these forests has been determined. The obtained data fundamentally change our notions of potential vegetation in boreal forests. Conclusions. Considerable species- and ecological diversity of tall-herb forest flora fundamentally changes our notion of the appearance of European boreal forests and determines their unique role in maintaining the highest possible level of biodiversity. The presence of tall-herb forests in various parts of eastern European taiga together with Eurasian habitats of most tall-herb species lead us to a suggestion that it is exactly this type of forests that represented the prehistoric boreal forests. In this connection, further research into still preserved fragments of tall-herb forests within the boundaries of northern Eurasia acquires huge significance. This research will help put forward systems of forest management aimed at restoring potential biodiversity of boreal forests in general
Recommended from our members
Studies of HT and HTO Behavior in the Vicinity of Long-Term Emission Source: Model - Experiment Intercomparison
There are presented in the research results of HT and HTO deposition and the model of HT (HTO) atmosphere concentration in the vicinity of a long-term HT and HTO emission source. Scavenging of HTO by precipitations was studied in 6 field experiments. The site of the scavenging experiments was around a 30 m emission source. The sampling arcs were chosen at 150-300 m from the base of the source to minimize dry deposition on the precipitation collectors. Data of the scavenging experiments are presented. Kinetics of HT deposition to soil through its oxidation has been studied in laboratory conditions. The activity of HTO converted in the soil sample during a certain period of time was used to determine the oxidation rate. This rate varies, depending on the catalytic and/or biological activity of the soil material. Theoretical considerations have shown that the deposition rate can be expressed by the effective rate of oxidation, which formally corresponds to the first-order HT oxidation. HT deposition rates are reported. The model, used for assessments, takes into account atmospheric dispersion, deposition and reemission. The model of HTO wet deposition is taken into account kinetics of HTO exchange between vapor and liquid phase with parameters such as rain drop spectra, rain intensity, condensation-evaporation on drop's interface. Gauss type formulae for continuous emission source is used to calculate HTO atmospheric concentration. Meteorological data are used as input parameters for modeling. The data presented on HT deposition to soil and HTO washout by precipitation is required for assessment of consequences of HT (HTO) release into the atmosphere