117 research outputs found

    Large Signal Performance of the Gallium Nitride Heterostructure Field-Effect Transistor With a Graphene Heat-Removal System

    Get PDF
    The self-heating effect exerts a considerable influence on the characteristics of high-power electronic and optoelectronic devices based on gallium nitride. An extremely non-uniform distribution of the dissipated power and a rise in the average temperature in the gallium nitride heterostructure field-effect transistor lead to the formation of a hot spot near the conductive channel and result in the degradation of the drain current, power gain and device reliability. The purpose of this work is to design a gallium nitride heterostructure field-effect transistor with an effective graphene heat-removal system and to study using numerical simulation the thermal phenomena specific to it. The object of the research is the device structure formed on sapphire with a grapheme heat-spreading element placed on its top surface and a trench in the passivation layer filled with diamond grown by chemical vapor deposition. The subject of the research is the large signal performance quantities. The simulation results confirm the effectiveness of the heat-removal system integrated into the heterostructure field-effect transistor and leading to the suppression of the self-heating effect and to the improvement of the device performance. The advantage of our concept is that the heat-spreading element is structurally connected with a heat sink and is designed to remove the heat immediately from the maximum temperature area through the trench in which a high thermal conductivity material is deposited. The results of this work can be used by the electronics industry of the Republic of Belarus for developing the hardware components of gallium nitride power electronics.The self-heating effect exerts a considerable influence on the characteristics of high-power electronic and optoelectronic devices based on gallium nitride. An extremely non-uniform distribution of the dissipated power and a rise in the average temperature in the gallium nitride heterostructure field-effect transistor lead to the formation of a hot spot near the conductive channel and result in the degradation of the drain current, power gain and device reliability. The purpose of this work is to design a gallium nitride heterostructure field-effect transistor with an effective graphene heat-removal system and to study using numerical simulation the thermal phenomena specific to it. The object of the research is the device structure formed on sapphire with a grapheme heat-spreading element placed on its top surface and a trench in the passivation layer filled with diamond grown by chemical vapor deposition. The subject of the research is the large signal performance quantities. The simulation results confirm the effectiveness of the heat-removal system integrated into the heterostructure field-effect transistor and leading to the suppression of the self-heating effect and to the improvement of the device performance. The advantage of our concept is that the heat-spreading element is structurally connected with a heat sink and is designed to remove the heat immediately from the maximum temperature area through the trench in which a high thermal conductivity material is deposited. The results of this work can be used by the electronics industry of the Republic of Belarus for developing the hardware components of gallium nitride power electronics

    ЭксплуатационныС характСристики транзистора с высокой ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΡΡ‚ΡŒΡŽ элСктронов Π½Π° основС Π½ΠΈΡ‚Ρ€ΠΈΠ΄Π° галлия с тСплоотводящими элСмСнтами Π½Π° основС Π½ΠΈΡ‚Ρ€ΠΈΠ΄Π° Π±ΠΎΡ€Π°

    Get PDF
    A local thermal management solution for high electron mobility transistors based on GaN was developed using a BN layer as a heat-spreading element. The thermally conducting and electrically insulating nature of BN allows it to be placed close to the active area and to be in direct contact with the electrodes and the heat sink, thus introducing an additional heat-escaping route. The numerical simulations of a GaN high electron mobility transistor with the BN heat-spreading element revealed the improvement in the DC, breakdown, small-signal AC and transient characteristics. In case of sapphire substrate, the maximum temperature in the device structure operating at a power density of 3.3 W/mm was reduced by 82.4 Β°C, while the breakdown voltage at a gate-source voltage of 2 V was increased by 357 V. The cut-off frequency and the maximum oscillation frequency at a gate-source voltage of 6 V and a drain-source voltage of 30 V were enhanced by 1.38 and 1.49 times, respectively. We suppose that the proposed thermal management method can be adapted to other high-power devices.ΠŸΡ€Π΅Π΄Π»Π°Π³Π°Π΅Ρ‚ΡΡ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡ влияния эффСкта саморазогрСва Π² транзисторах с высокой ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΡΡ‚ΡŒΡŽ элСктронов Π½Π° основС Π½ΠΈΡ‚Ρ€ΠΈΠ΄Π° галлия, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² использовании слоя Π½ΠΈΡ‚Ρ€ΠΈΠ΄Π° Π±ΠΎΡ€Π° Π² качСствС тСплоотводящСго элСмСнта. Высокая Ρ‚Π΅ΠΏΠ»ΠΎΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΎΡΡ‚ΡŒ ΠΈ низкая элСктричСская ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ Π½ΠΈΡ‚Ρ€ΠΈΠ΄Π° Π±ΠΎΡ€Π° ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ Ρ€Π°ΡΠΏΠΎΠ»Π°Π³Π°Ρ‚ΡŒ слой Π½Π° Π΅Π³ΠΎ основС Π²Π±Π»ΠΈΠ·ΠΈ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ области ΠΈ Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒΡΡ Π² ΠΏΠ»ΠΎΡ‚Π½ΠΎΠΌ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π΅ с элСктродами ΠΈ Ρ‚Π΅ΠΏΠ»ΠΎΠΏΠΎΠ³Π»ΠΎΡ‰Π°ΡŽΡ‰ΠΈΠΌ элСмСнтом, формируя Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΊΠ°Π½Π°Π» для отвСдСния ΠΈΠ·Π±Ρ‹Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ Ρ‚Π΅ΠΏΠ»Π°. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ числСнного модСлирования транзистора с высокой ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΡΡ‚ΡŒΡŽ элСктронов Π½Π° основС Π½ΠΈΡ‚Ρ€ΠΈΠ΄Π° галлия с тСплоотводящим элСмСнтом Π½Π° основС Π½ΠΈΡ‚Ρ€ΠΈΠ΄Π° Π±ΠΎΡ€Π° ΡƒΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ Π½Π° ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΠ΅ элСктричСских, частотных ΠΈ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π½Ρ‹Ρ… характСристик, ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ напряТСния пробоя. Π’ случаС сапфировой ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠΈ максимальная Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π° Π² структурС ΠΏΡ€ΠΈΠ±ΠΎΡ€Π°, Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‰Π΅Π³ΠΎ Π½Π° ΡƒΡ€ΠΎΠ²Π½Π΅ 3,3 Π’Ρ‚/ΠΌΠΌ, сниТаСтся Π½Π° 82,4 Β°Π‘, ΠΏΡ€ΠΈ этом напряТСниС пробоя, рассчитанноС ΠΏΡ€ΠΈ напряТСнии Π·Π°Ρ‚Π²ΠΎΡ€-исток 2 Π’, ΠΏΠΎΠ²Ρ‹ΡˆΠ°Π΅Ρ‚ΡΡ Π½Π° 357 Π’. Граничная частота ΠΈ максимальная частота Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ, ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹Π΅ ΠΏΡ€ΠΈ напряТСнии Π·Π°Ρ‚Π²ΠΎΡ€-исток 6 Π’ ΠΈ напряТСнии сток-исток 30 Π’, ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°ΡŽΡ‚ΡΡ Π² 1,38 ΠΈ 1,49 Ρ€Π°Π·, соотвСтствСнно. ΠŸΡ€Π΅Π΄Π»Π°Π³Π°Π΅ΠΌΠΎΠ΅ конструктивно-тСхнологичСскоС Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ ΠΈ для Π΄Ρ€ΡƒΠ³ΠΈΡ… ΠΌΠΎΡ‰Π½Ρ‹Ρ… ΠΏΡ€ΠΈΠ±ΠΎΡ€ΠΎΠ²

    Leakage current in AlGaN Schottky diode in terms of the phonon-assisted tunneling model

    Get PDF
    The leakage current in the AlGaN Schottky diode under a reverse bias is simulated and compared within the frameworks of the thermionic emission–diffusion and phonon-assisted tunneling models. It is shown that the phonon-assisted tunneling model is suitable to describe the reverse-bias characteristic of the AlGaN Schottky contact and can also be applied to calculate the gate leakage current in the AlGaN/GaN high electron mobility transistor

    Mobility of a two-dimensional electron gas in the AlGaAs/GaAs heterostructure: simulation and analysis

    Get PDF
    At temperatures above 100 K, a two-dimensional electron gas generated at the AlGaAs/GaAs heterointerface can be characterized by the three dominant scattering mechanisms: acoustic deformation potential, polar acoustic phonon and polar optical phonon. An analytical model describing the two-dimensional electron gas mobility controlled by these scattering processes as a function of the electron concentration and the temperature was developed and integrated into a device simulator package using a built-in C language interpreter. The electrical characteristics of a simple AlGaAs/GaAs high electron mobility transistor were simulated using either the derived or a conventional bulk mobility model and the results were compared

    Mobility of a two-dimensional electron gas in the AlGaN/GaN heterostructure: simulation and analysis

    Get PDF
    At temperatures higher than the room temperature, a two-dimensional electron gas (2DEG) formed at the AlGaN/GaN heterointerface can be characterized by the three dominant scattering mechanisms: acoustic deformation potential, polar acoustic phonon and polar optical phonon scatterings. An analytical model describing the 2DEG mobility limited by these scattering mechanisms as a function of the carrier concentration and the temperature was developed and integrated into a device simulator package using a C language interpreter. The model should be useful for heterostructure device simulators such as Blaze

    Magnetic properties of low-dimensional MAX3 (M=Cr, A=Ge, Si and X=S, Se, Te) systems

    Get PDF
    The article presents the results of a magnetism study in quasi-two-dimensional MAX3 (M=Cr, A=Ge, Si and X=S, Se, Te) systems. We calculated the microscopic magnetic parameters using quantum mechanical methods and showed that MAX3 can have a high spin polarization. The easy magnetization axis lies normal to the layer plane. The main magnetic order of the CrGeSe3, CrGeTe3, CrSiSe3, and CrSiTe3 atomic systems is ferromagnetism. CrGeS3 and CrSiS3 exhibit antiferromagnetism. The low energy stability of the magnetic order is confirmed by the calculated values of the exchange interaction integral (J). We showed that the magnetic order realizes only at low temperatures. A study of the dependences of J and the magnetic anisotropy energy on the structural (distance between magnetic ions, distortion of the octahedral complex) and electronic properties (population and hybridization of atomic and molecular orbitals) has been performed. The dependences indicate three possible mechanisms of the exchange interaction. We have given ways of influencing a specific mechanism for managing exchange interaction

    Π’Π΅ΠΏΠ»ΠΎΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΎΡΡ‚ΡŒ Π½ΠΈΡ‚Ρ€ΠΈΠ΄Π° галлия с кристалличСской структурой Ρ‚ΠΈΠΏΠ° Π²ΡŽΡ€Ρ†ΠΈΡ‚Π°

    Get PDF
    This paper reviews the theoretical and experimental works concerning one of the most important parameters of wurtzite gallium nitride – thermal conductivity. Since the heat in gallium nitride is transported almost exclusively by phonons, its thermal conductivity has a temperature behavior typical of most nonmetallic crystals: the thermal conductivity increases proportionally to the third power of temperature at lower temperatures, reaches its maximum at approximately 1/20 of the Debye temperature and decreases proportionally to temperature at higher temperatures. It is shown that the thermal conductivity of gallium nitride (depending on fabrication process, crystallographic direction, concentration of impurity and other defects, isotopical purity) varies significantly, emphasizing the importance of determining this parameter for the samples that closely resemble those being used in specific applications. For isotopically pure undoped wurtzite gallium nitride, the thermal conductivity at room temperature has been estimated as high as 5.4 W/(cmΒ·K). The maximum room temperature value measured for bulkshaped samples of single crystal gallium nitride has been 2.79 W/(cmΒ·K)

    Physic-topological (electrical) model of a junction field effect transistor, taking into account the degradation of operational characteristics under the influence of penetrating radiation

    Get PDF
    The results of applying the compact model of junction field effect transistors developed and integrated into the Cadence software product for control to evaluate the hardness of a two-stage differential amplifier circuit under the combined or separate exposure to fluences of electrons, protons and neutrons are presented

    First-principles study of anisotropic thermal conductivity of GaN, AlN, and Al0.5Ga0.5N

    Get PDF
    The thermal stability of devices based on GaN, AlN, and Al0.5Ga0.5N semiconductors is a critical property for efficient and reliable operation. The thermal conductivity of these materials has anisotropic nature. We proposed an approach for calculating the anisotropic thermal conductivity based on harmonic and anharmonic interatomic force constants of a lattice. The thermal-conductivity coefficient of GaN, AlN, and Al0.5Ga0.5N in the [100], [001], and [111] directions were calculated using ab initio methods by solving the linearized Boltzmann transport equation. It equals Ξ»[100] = 259.28, Ξ»[001] = 335.96 and Ξ»[111] = 309.56 W/(mΒ·K) for GaN; Ξ»[100] = 396.06 , Ξ»[001] = 461.65 and Ξ»[111] = 435.05 W/(mΒ·K) for AlN; and Ξ»[100] = 186.74, Ξ»[001] = 165.24 and Ξ»[111] = 177.62 W/(mΒ·K) for Al0.5Ga0.5N at 300 K. The dependence of the coefficient Ξ»(T) on temperature in the range from 250 to 750 K is presented. A comparative analysis of the GaN thermal conductivity investigations has been carried out for experimental studies and theoretical calculations

    Π’Π΅ΠΏΠ»ΠΎΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΎΡΡ‚ΡŒ Π½ΠΈΡ‚Ρ€ΠΈΠ΄Π° галлия с кристалличСской структурой Ρ‚ΠΈΠΏΠ° Π²ΡŽΡ€Ρ†ΠΈΡ‚Π°

    Get PDF
    This paper reviews the theoretical and experimental works concerning one of the most important parameters of wurtzite gallium nitride – thermal conductivity. Since the heat in gallium nitride is transported almost exclusively by phonons, its thermal conductivity has a temperature behavior typical of most nonmetallic crystals: the thermal conductivity increases proportionally to the third power of temperature at lower temperatures, reaches its maximum at approximately 1/20 of the Debye temperature and decreases proportionally to temperature at higher temperatures. It is shown that the thermal conductivity of gallium nitride (depending on fabrication process, crystallographic direction, concentration of impurity and other defects, isotopical purity) varies significantly, emphasizing the importance of determining this parameter for the samples that closely resemble those being used in specific applications. For isotopically pure undoped wurtzite gallium nitride, the thermal conductivity at room temperature has been estimated as high as 5.4 W/(cmΒ·K). The maximum room temperature value measured for bulkshaped samples of single crystal gallium nitride has been 2.79 W/(cmΒ·K).Π’Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ Π°Π½Π°Π»ΠΈΠ· тСорСтичСских ΠΈ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… исслСдований ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ· Π²Π°ΠΆΠ½Π΅ΠΉΡˆΠΈΡ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Π½ΠΈΡ‚Ρ€ΠΈΠ΄Π° галлия с кристалличСской структурой Ρ‚ΠΈΠΏΠ° Π²ΡŽΡ€Ρ†ΠΈΡ‚Π° – тСплопроводности. Π’Π°ΠΊ ΠΊΠ°ΠΊ пСрСнос Ρ‚Π΅ΠΏΠ»Π° Π² Π½ΠΈΡ‚Ρ€ΠΈΠ΄Π΅ галлия осущСствляСтся Π³Π»Π°Π²Π½Ρ‹ΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ„ΠΎΠ½ΠΎΠ½ΠΎΠ², Π΅Π³ΠΎ Ρ‚Π΅ΠΏΠ»ΠΎΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΎΡΡ‚ΡŒ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΡƒΡŽ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½ΡƒΡŽ для Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π° нСмСталличСских кристаллов: увСличиваСтся ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΉ стСпСни Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ Π² области Π½ΠΈΠ·ΠΊΠΈΡ… Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€, достигаСт своСго максимального значСния ΠΏΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅, ΠΏΡ€ΠΈΠ±Π»ΠΈΠ·ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Ρ€Π°Π²Π½ΠΎΠΉ 1/20 ΠΎΡ‚ дСбаСвской, ΠΈ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ΡΡ ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ Π² области высоких Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€. Показано, Ρ‡Ρ‚ΠΎ Π² зависимости ΠΎΡ‚ условий (тСхнология изготовлСния ΠΎΠ±Ρ€Π°Π·Ρ†Π°, кристаллографичСскоС Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅, концСнтрация примСси ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ², ΠΈΠ·ΠΎΡ‚ΠΎΠΏΠ½Ρ‹ΠΉ состав) Ρ‚Π΅ΠΏΠ»ΠΎΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΎΡΡ‚ΡŒ Π½ΠΈΡ‚Ρ€ΠΈΠ΄Π° галлия ΠΌΠΎΠΆΠ΅Ρ‚ Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒΡΡ Π² большом Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ, Ρ‡Ρ‚ΠΎ ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π½Π° Π²Π°ΠΆΠ½ΠΎΡΡ‚ΡŒ опрСдСлСния этого ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° ΠΈΠΌΠ΅Π½Π½ΠΎ Ρ‚Π΅Ρ… ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ Π² ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½Ρ‹Ρ… прилоТСниях. Π’Π΅ΠΏΠ»ΠΎΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΎΡΡ‚ΡŒ Π½Π΅Π»Π΅Π³ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΈΠ·ΠΎΡ‚ΠΎΠΏΠ½ΠΎ-чистого Π½ΠΈΡ‚Ρ€ΠΈΠ΄Π° галлия ΠΏΡ€ΠΈ ΠΊΠΎΠΌΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ оцСниваСтся Π½Π° ΡƒΡ€ΠΎΠ²Π½Π΅ 5,4 Π’Ρ‚/(см·К). Максимальная Ρ‚Π΅ΠΏΠ»ΠΎΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΎΡΡ‚ΡŒ, достигнутая для объСмного ΠΎΠ±Ρ€Π°Π·Ρ†Π° ΠΈΠ· монокристалличСского Π½ΠΈΡ‚Ρ€ΠΈΠ΄Π° галлия, Ρ€Π°Π²Π½Π° 2,79 Π’Ρ‚/(см·К)
    • …
    corecore