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Abstract. At temperatures higher than the room temperature, a two-dimensional electron gas 

(2DEG) formed at the AlGaN/GaN heterointerface can be characterized by the three dominant 

scattering mechanisms: acoustic deformation potential, polar acoustic phonon and polar optical 

phonon scatterings. An analytical model describing the 2DEG mobility limited by these 

scattering mechanisms as a function of the carrier concentration and the temperature was 

developed and integrated into a device simulator package using a C language interpreter. The 

model should be useful for heterostructure device simulators such as Blaze.  

1. Introduction 

Gallium nitride (GaN) is a binary III/V semiconductor with a wide band gap of 3.4 eV, which affords 

it outstanding properties for applications in high power, high frequency and optoelectronic devices. 

The excellent breakdown and reasonable transport characteristics of GaN are made full use of in 

heterojunction field-effect transistors or high electron mobility transistors (HEMTs), which are 

currently the most widespread electronic nitride devices. The HEMT is a field-effect transistor, 

incorporating a junction between two materials with different band gaps, i.e. heterojunction, to confine 

electrons to a triangular quantum well. As a result, the electrons are free to move in two dimensions 

but tightly confined in the third, thus forming a two-dimensional electron gas (2DEG). Figure 1 

illustrates the conduction band edge (Ec) diagrams of the aluminium gallium nitride (AlGaN)/GaN 

heterostructure at absolute zero and at a temperature (T) above 0 K. The density in the 2DEG is 

determined by the conduction band edge and the Fermi level (EF). Optimally only one of the quantized 

levels lies below the Fermi level. As the carriers in the triangular well are separated from the donors in 

the AlGaN layer by a thin space layer, which decreases the impurity scattering [1], the 2DEG exhibits 

a very high mobility. 

Analyzing III/V semiconductors and devices with position-dependent band structures is complicated 

by the lack of a thorough approach to modeling, as the development of III/V materials has routinely 

trailed the advanced silicon technology. The electrical characterization of HEMTs requires accurate 

mobility models for carriers both in a bulk material layer and in a 2DEG. Popular heterostructure 

device simulator packages such as Blaze, however, do not include built-in 2DEG mobility models. In 

this paper, we develop and integrate into a device simulator using a C language interpreter an 

analytical model describing the 2DEG mobility limited by three dominant scattering mechanisms: 

acoustic deformation potential, polar acoustic phonon and polar optical phonon scatterings. 
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2. Structure 

A two-dimensional schematic representation of the AlGaN/GaN HEMT structure, the electrical 

behavior of which is simulated using the developed 2DEG mobility model, is shown in figure 2. It 

consists of a 1.5 µm GaN buffer layer, a 20 nm Al0.21G0.79aN barrier layer and 6 µm silicon nitride 

(Si3N4) passivation layer. The thickness and the length of the gate are equal to 3 µm and 0.5 µm, 

respectively. The source-to-gate and the gate-to-drain distances are 1 µm and 3.5 µm. The scale factor 

representing the third dimension in two-dimensional simulations equals to 150 µm. The thickness of 

the sapphire (Al2O3) substrate is 100 µm. 

  

Figure 1. Conduction band edge diagrams of the 

AlGaN/GaN heterostructure at absolute zero and at a 

temperature above 0 K. 

Figure 2. AlGaN/GaN HEMT structure. 

3. Two-dimensional electron gas mobility model 

At temperatures higher than the room temperature, a 2DEG formed at the AlGaN/GaN heterointerface 

can be characterized by the three dominant scattering mechanisms: acoustic deformation potential, 

polar acoustic phonon and polar optical phonon scatterings. As was noted previously, the impurity 

scattering is relatively low due to the space layer and is not accounted for in the mobility model. 

The momentum relaxation time due to the acoustic deformation potential scattering is calculated as 

follows [1]: 
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where ħ is the reduced Planck constant, vl is the velocity of longitudinal acoustic phonon, ρ is the 

density, m is the effective mass, κ is the Boltzmann constant and φAD is the acoustic deformation 

potential. 

In equation (1) b is the effective width of the 2DEG, which is defined as the double average distance 

of the electronic wave function from the heterointerface into GaN for the 0th subband (z0). According 

to Lee et al. [1], z0 equals approximately to the distance from the heterointerface to the intersection of 

the conduction band edge and the Fermi level. Our simulations of AlGaN/GaN HEMTs using a self-
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consistent coupled Schrodinger-Poisson model reveal that z0 for a 2DEG density (n) of 1016 m-2 equals 

to 4 nm. In that case, the expression for b is given by 
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The momentum relaxation time due to the polar acoustic phonon (piezoelectric) scattering mechanism 

is calculated as follows [2]: 
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where q is the elementary charge, h14 is the piezoelectric constant and vt is the velocity of transverse 

acoustic phonon. 

In equation (3), qF is the wave vector on the Fermi surface determined by 

  
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The parameters Γl and Γt are defined by 
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where γl and γt are determined by 
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The momentum relaxation time due to the polar optical phonon scattering is calculated as follows [3]: 
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where ε is the dielectric constant, VT is the thermal voltage, Eg is the band gap and EPOP is the polar 

optical phonon energy. 

In equation (9), κε is the coupling constant: 
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where ε∞ and ε0 are the relative permittivity at high and low frequency, respectively. 
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The parameter Np is the phonon Planck function: 
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The relation between the i-mobility limited by one scattering mechanism and the corresponding  

i-momentum relaxation time is 

 .i i

q

m
   (12) 

The overall 2DEG mobility limited by the three scattering mechanisms is calculated using 

Matthiessen's rule: 
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4. Results 

In figures 3(a, b, c, d), the temperature dependences of the 2DEG mobility limited by each of the three 

scattering mechanisms and the overall mobility are presented for different 2DEG densities. 

  

Figure 3(a, b). 2DEG mobility vs temperature for n = 1·1012 cm-2 (a) and 4·1012 cm-2 (b): 1 – acoustic 

deformation potential scattering; 2 – polar acoustic phonon scattering; 3 – polar optical phonon 

scattering; 4 – overall mobility. 

As can be seen from the charts, if n = 1·1012 cm-2, the acoustic deformation potential scattering 

mechanism has a minor impact on the 2DEG mobility at any temperatures. For instance, at the 

temperature of 600 K, µADP equals to 7100 cm2/(V·s), while the overall mobility is 241 cm2/(V·s). 

When the electron concentration is raised, this mechanism increases its influence on the total mobility. 

In case of n = 1·1013 cm-2, µADP reaches the value of 3296 cm2/(V·s) at µ = 253 cm2/(V·s). At the same 

time, the polar acoustic phonon scattering reduces its influence on the total mobility (µPE changes from 

the value of 1967 cm2/(V·s) to 6228 cm2/(V·s)), when the electron concentration is increased, but 

remains considerable at the whole temperature range. 

At temperatures higher than the room temperature, the mobility of the 2DEG with any carrier 

concentration is governed predominantly by the polar optical phonon scattering mechanism [4] and (9) 

may be used as a rough approximation expression for the mobility at high temperatures. 
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Figure 3(c, d). 2DEG mobility vs temperature for n = 7·1012 cm-2 (c) and 1·1013 cm-2 (d): 1 – acoustic 

deformation potential scattering; 2 – polar acoustic phonon scattering; 3 – polar optical phonon 

scattering; 4 – overall mobility. 

In figure 4, the drain current vs drain voltage characteristics of the simulated AlGaN/GaN HEMT are 

presented. For comparison, one curve is calculated with the electron mobility in the device channel 

equal to 400 cm2/(V·s), a value commonly obtained for bulk GaN [5], and another is calculated using 

the developed model. The temperature is constant (300 K) and the gate voltage is 0 V. 

Figure 4. Output characteristics of the simulated AlGaN/GaN HEMT: 1 – bulk mobility model; 2 – 

developed 2DEG mobility model. 

The calculated 2DEG mobility under the gate equals to 1378 cm2/(V·s). We suppose that the 

developed model can be useful for heterostructure device simulators such as Blaze. 
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