1,635 research outputs found

    Long-term effectiveness of a multifaceted intervention on pain management in a walk-in clinic

    Get PDF
    Background: Pain is a common complaint of patients attending walk-in clinics, but timely and appropriate pain management is often lacking. Aim: To evaluate the impact of a multifaceted intervention on pain management. Design: Prospective interventional study. Methods: Three cross-sectional surveys were conducted: before, 4 months after and 14 months after a multifaceted intervention at the medical walk-in clinic of a university hospital. The intervention included both educational activities and structural changes. Use of recommended pain management procedures, pain relief and overall assessments of pain treatment and health professionals' attitudes were assessed using patient questionnaires, collected by mail. History of pain, records of pain intensity and use of pain medication were extracted from medical files. Results: We analysed 1409 medical files and 695 questionnaires of patients presenting with pain. Documentation of pain intensity and administration of pain medication at the walk-in clinic improved significantly 14 months after the intervention (7% vs. 53% and 17% vs. 27%, respectively, p < 0.001) and pain medication was more often administered by the oral route (14% vs. 23%, p < 0.001). However, no change was observed for complete pain relief (40% vs. 39%, p = 0.92) or patients' overall assessments of pain management. Discussion: The intervention improved adherence to recommended procedures, even in the longer term, but did not result in better patient outcomes. Continuing efforts are needed to help health professionals improve pain management in out-patient car

    Wavefield characteristics and spatial incoherency - a comparative study from Argostoli rock- and soil-site dense seismic arrays

    Get PDF
    International audienceThe current article presents the results from the analysis of the seismic events recorded from a dense array located on a rock site at Argostoli, Cephalonia Island, Greece. The objective of the study is to explore to what extent the non-direct, diffracted surface waves influence the seismic wavefield at a rock site, to investigate the loss of coherency of ground motions and to compare the results with those from a previously studied similar array located at an adjacent small, shallow sedimentary valley. The array consists of 21 velocimeters encompassing a central station in four concentric circles with diameters 20, 60, 180 and 360 m. The analyzed seismic dataset includes 40 events with magnitudes ranging from 2 to 5 and epicentral distance up to 200 km. MUSIQUE algorithm has been used to analyze the seismic wavefield by extracting the backazimuth and slowness of the dominant incoming waves and identifying the Love and Rayleigh waves. Lagged coherency has been estimated for all the available station pairs in the array and the results from the entire dataset have been averaged at four separation distance intervals, 10-20, 20-30, 30-40, 80-90 m. The results were also compared with those from a similar array located on an adjacent small, shallow sedimentary valley. The analysis suggests that about 20percent energy of the wavefield could be characterized as diffracted Love and Rayleigh waves, primarily arriving from the north-east and north-south directions, respectively. The spatial coherency estimations at the rock site are, generally, observed to be larger than those from the sedimentary array, especially at frequencies below 5 Hz. The directionality of coherency estimates observed from the soil array is absent in case of the rock array data. Comparison with the widely-quoted parametric models reveals that there is little correlation between the decay of coherency observed at the rock site and the models. The significant difference observed between the results of the rock and soil array indicate that the spatial incoherency is largely site dependent and could be potentially associated with the formation of locally generated wavefiel

    Actions of the braid group, and new algebraic proofs of results of Dehornoy and Larue

    Full text link
    This article surveys many standard results about the braid group with emphasis on simplifying the usual algebraic proofs. We use van der Waerden's trick to illuminate the Artin-Magnus proof of the classic presentation of the algebraic mapping-class group of a punctured disc. We give a simple, new proof of the Dehornoy-Larue braid-group trichotomy, and, hence, recover the Dehornoy right-ordering of the braid group. We then turn to the Birman-Hilden theorem concerning braid-group actions on free products of cyclic groups, and the consequences derived by Perron-Vannier, and the connections with the Wada representations. We recall the very simple Crisp-Paris proof of the Birman-Hilden theorem that uses the Larue-Shpilrain technique. Studying ends of free groups permits a deeper understanding of the braid group; this gives us a generalization of the Birman-Hilden theorem. Studying Jordan curves in the punctured disc permits a still deeper understanding of the braid group; this gave Larue, in his PhD thesis, correspondingly deeper results, and, in an appendix, we recall the essence of Larue's thesis, giving simpler combinatorial proofs.Comment: 51`pages, 13 figure

    On postglacial sea level—III. Incorporating sediment redistribution

    Get PDF
    We derive a generalized theory for gravitationally self-consistent, static sea level variations on earth models of arbitrary complexity that takes into account the redistribution of sediments. The theory is an extension of previous work that incorporated, into the governing equations, shoreline migration due to local sea level variations and changes in the geometry of grounded, marine-based ice. In addition, we use viscoelastic Love number theory to present a version of the new theory valid for spherically symmetric earth models. The Love number theory accounts for the gravitational, deformational and rotational effects of the sediment redistribution. As a first, illustrative application of the new theory, we compute the perturbation in sea level driven by an idealized pulse of sediment transport into the Gulf of Mexico. We demonstrate that incorporating a gravitationally self-consistent water load in this case significantly improves the accuracy of sea level predictions relative to previous simplified treatments of the sediment redistribution

    Smooth stable and unstable manifolds for stochastic partial differential equations

    Full text link
    Invariant manifolds are fundamental tools for describing and understanding nonlinear dynamics. In this paper, we present a theory of stable and unstable manifolds for infinite dimensional random dynamical systems generated by a class of stochastic partial differential equations. We first show the existence of Lipschitz continuous stable and unstable manifolds by the Lyapunov-Perron's method. Then, we prove the smoothness of these invariant manifolds

    Thermodynamics of SmCo5 compound doped with Fe and Ni: An ab initio study

    Get PDF
    SmCo5 permanent magnets exhibit enormous uniaxial magnetocrystalline anisotropy energy and have a high Curie temperature. However, their low energy product is a significant deficiency. To increase the energy product in SmCo5, we propose substituting cobalt with iron, that has a much larger magnetic moment, in a SmCoNiFe3 magnet where nickel is used as a thermodynamic stabilizer

    Assisted evolution enables HIV-1 to overcome a high trim5α-imposed genetic barrier to rhesus macaque tropism

    Get PDF
    Diversification of antiretroviral factors during host evolution has erected formidable barriers to cross-species retrovirus transmission. This phenomenon likely protects humans from infection by many modern retroviruses, but it has also impaired the development of primate models of HIV-1 infection. Indeed, rhesus macaques are resistant to HIV-1, in part due to restriction imposed by the TRIM5α protein (rhTRIM5α). Initially, we attempted to derive rhTRIM5α-resistant HIV-1 strains using two strategies. First, HIV-1 was passaged in engineered human cells expressing rhTRIM5α. Second, a library of randomly mutagenized capsid protein (CA) sequences was screened for mutations that reduced rhTRIM5α sensitivity. Both approaches identified several individual mutations in CA that reduced rhTRIM5α sensitivity. However, neither approach yielded mutants that were fully resistant, perhaps because the locations of the mutations suggested that TRIM5α recognizes multiple determinants on the capsid surface. Moreover, even though additive effects of various CA mutations on HIV-1 resistance to rhTRIM5α were observed, combinations that gave full resistance were highly detrimental to fitness. Therefore, we employed an 'assisted evolution' approach in which individual CA mutations that reduced rhTRIM5α sensitivity without fitness penalties were randomly assorted in a library of viral clones containing synthetic CA sequences. Subsequent passage of the viral library in rhTRIM5α-expressing cells resulted in the selection of individual viral species that were fully fit and resistant to rhTRIM5α. These viruses encoded combinations of five mutations in CA that conferred complete or near complete resistance to the disruptive effects of rhTRIM5α on incoming viral cores, by abolishing recognition of the viral capsid. Importantly, HIV-1 variants encoding these CA substitutions and SIVmac239 Vif replicated efficiently in primary rhesus macaque lymphocytes. These findings demonstrate that rhTRIM5α is difficult to but not impossible to evade, and doing so should facilitate the development of primate models of HIV-1 infection
    corecore