6,021 research outputs found

    Multipartite entanglement and few-body Hamiltonians

    Full text link
    We investigate the possibility to obtain higly multipartite-entangled states as nondegenerate eigenstates of Hamiltonians that involve only short-range and few-body interactions. We study small-size systems (with a number of qubits ranging from three to five) and search for Hamiltonians with a Maximally Multipartite Entangled State (MMES) as a nondegenerate eigenstate. We then find conditions, including bounds on the number of coupled qubits, to build a Hamiltonian with a Greenberger-Horne-Zeilinger (GHZ) state as a nondegenerate eigenstate. We finally comment on possible applications.Comment: 15 pages, 3 figures. Proceedings of IQIS 2013 to appear on IJQ

    Quantum Typicality and Initial Conditions

    Full text link
    If the state of a quantum system is sampled out of a suitable ensemble, the measurement of some observables will yield (almost) always the same result. This leads us to the notion of quantum typicality: for some quantities the initial conditions are immaterial. We discuss this problem in the framework of Bose-Einstein condensates.Comment: 8 page

    Long-lived entanglement of two multilevel atoms in a waveguide

    Full text link
    We study the presence of nontrivial bound states of two multilevel quantum emitters and the photons propagating in a linear waveguide. We characterize the conditions for the existence of such states and determine their general properties, focusing in particular on the entanglement between the two emitters, that increases with the number of excitations. We discuss the relevance of the results for entanglement preservation and generation by spontaneous relaxation processes.Comment: 6 pages, 1 figur

    Huygens' principle and Dirac-Weyl equation

    Full text link
    We investigate the validity of Huygens' principle for forward propagation in the massless Dirac-Weyl equation. The principle holds for odd space dimension n, while it is invalid for even n. We explicitly solve the cases n=1,2 and 3 and discuss generic nn. We compare with the massless Klein-Gordon equation and comment on possible generalizations and applications.Comment: 7 pages, 1 figur

    Correlation plenoptic imaging

    Full text link
    Plenoptic imaging is a promising optical modality that simultaneously captures the location and the propagation direction of light in order to enable three-dimensional imaging in a single shot. However, in classical imaging systems, the maximum spatial and angular resolutions are fundamentally linked; thereby, the maximum achievable depth of field is inversely proportional to the spatial resolution. We propose to take advantage of the second-order correlation properties of light to overcome this fundamental limitation. In this paper, we demonstrate that the momentum/position correlation of chaotic light leads to the enhanced refocusing power of correlation plenoptic imaging with respect to standard plenoptic imaging.Comment: 6 pages, 3 figure

    Typical observables in a two-mode Bose system

    Full text link
    A class of k-particle observables in a two-mode system of Bose particles is characterized by typicality: if the state of the system is sampled out of a suitable ensemble, an experimental measurement of that observable yields (almost) always the same result. We investigate the general features of typical observables, the criteria to determine typicality and finally focus on the case of density correlation functions, which are related to spatial distribution of particles and interference.Comment: 8 pages, 1 figur

    Phase Transitions in ZnZ_{n} Gauge Models: Towards Quantum Simulations of the Schwinger-Weyl QED

    Get PDF
    We study the ground-state properties of a class of Zn\mathbb{Z}_n lattice gauge theories in 1 + 1 dimensions, in which the gauge fields are coupled to spinless fermionic matter. These models, stemming from discrete representations of the Weyl commutator for the U(1)\mathrm{U}(1) group, preserve the unitary character of the minimal coupling, and have therefore the property of formally approximating lattice quantum electrodynamics in one spatial dimension in the large-nn limit. The numerical study of such approximated theories is important to determine their effectiveness in reproducing the main features and phenomenology of the target theory, in view of implementations of cold-atom quantum simulators of QED. In this paper we study the cases n=2÷8n = 2 \div 8 by means of a DMRG code that exactly implements Gauss' law. We perform a careful scaling analysis, and show that, in absence of a background field, all Zn\mathbb{Z}_n models exhibit a phase transition which falls in the Ising universality class, with spontaneous symmetry breaking of the CPCP symmetry. We then perform the large-nn limit and find that the asymptotic values of the critical parameters approach the ones obtained for the known phase transition the zero-charge sector of the massive Schwinger model, which occurs at negative mass.Comment: 15 pages, 18 figure

    Signal-to-noise properties of correlation plenoptic imaging with chaotic light

    Full text link
    Correlation Plenoptic Imaging (CPI) is a novel imaging technique, that exploits the correlations between the intensity fluctuations of light to perform the typical tasks of plenoptic imaging (namely, refocusing out-of-focus parts of the scene, extending the depth of field, and performing 3D reconstruction), without entailing a loss of spatial resolution. Here, we consider two different CPI schemes based on chaotic light, both employing ghost imaging: the first one to image the object, the second one to image the focusing element. We characterize their noise properties in terms of the signal-to-noise ratio (SNR) and compare their performances. We find that the SNR can be significantly higher and easier to control in the second CPI scheme, involving standard imaging of the object; under adequate conditions, this scheme enables reducing by one order of magnitude the number of frames for achieving the same SNR.Comment: 12 pages, 3 figure

    Exploring plenoptic properties of correlation imaging with chaotic light

    Full text link
    In a setup illuminated by chaotic light, we consider different schemes that enable to perform imaging by measuring second-order intensity correlations. The most relevant feature of the proposed protocols is the ability to perform plenoptic imaging, namely to reconstruct the geometrical path of light propagating in the system, by imaging both the object and the focusing element. This property allows to encode, in a single data acquisition, both multi-perspective images of the scene and light distribution in different planes between the scene and the focusing element. We unveil the plenoptic property of three different setups, explore their refocusing potentialities and discuss their practical applications.Comment: 9 pages, 4 figure
    corecore