65 research outputs found

    Properties of Erbium and Ytterbium Doped Gallium Nitride Layers Fabricated by Magnetron Sputtering

    Get PDF
    We report about some properties of erbium and erbium/ytterbium doped gallium nitride (GaN) layers fabricated by magnetron sputtering onsilicon, quartz and Corning glass substrates. For fabricating GaN layers two types of targets were used - gallium in a stainless steel cup anda Ga2O3 target. Deposition was carried out in the Ar+N2 gas mixture. For erbium and ytterbium doping into GaN layers, erbium metallicpowder and ytterbium powder or Er2O3 and Yb2O3 pellets were laid on the top of the target. The samples were characterized by X-raydiffraction (XRD), photoluminescence spectra and nuclear analytical methods. While the use of a metallic gallium target ensured thedeposition of well-developed polycrystalline layers, the use of gallium oxide target provided GaN films with poorly developed crystals. Bothapproaches enabled doping with erbium and ytterbium ions during deposition, and typical emission at 1 530 nm due to the Er3+ intra-4f 4I13/2 → 4I15/2 transition was observed

    Properties of Erbium Doped Hydrogenated Amorphous Carbon Layers Fabricated by Sputtering and Plasma Assisted Chemical Vapor Deposition

    Get PDF
    We report about properties of carbon layers doped with Er3+ ions fabricated by Plasma Assisted Chemical Vapor Deposition (PACVD) and by sputtering on silicon or glass substrates. The structure of the samples was characterized by X-ray diffraction and their composition was determined by Rutherford Backscattering Spectroscopy and Elastic Recoil Detection Analysis. The Absorbance spectrum was taken in the spectral range from 400 nm to 600 nm. Photoluminescence spectra were obtained using two types of Ar laser (λex=514.5 nm, lex=488 nm) and also using a semiconductor laser (λex=980 nm). Samples fabricated by magnetron sputtering exhibited typical emission at 1530 nm when pumped at 514.5 nm.&nbsp

    Statistics of Raman-Active Excitations via Masurement of Stokes-Anti-Stokes Correlations

    Full text link
    A general fundamental relation connecting the correlation of Stokes and anti-Stokes modes to the quantum statistical behavior of vibration and pump modes in Raman-active materials is derived. We show that under certain conditions this relation can be used to determine the equilibrium number variance of phonons.Time and temperature ranges for which such conditions can be satisfied are studied and found to be available in todays' experimental standards. Furthermore, we examine the results in the presence of multi-mode pump as well as for the coupling of pump to the many vibration modes and discuss their validity in these cases.Comment: 12 pages, 1 figure, accepted for publication in Phys.Rev.

    Radon transform and pattern functions in quantum tomography

    Full text link
    The two-dimensional Radon transform of the Wigner quasiprobability is introduced in canonical form and the functions playing a role in its inversion are discussed. The transformation properties of this Radon transform with respect to displacement and squeezing of states are studied and it is shown that the last is equivalent to a symplectic transformation of the variables of the Radon transform with the contragredient matrix to the transformation of the variables in the Wigner quasiprobability. The reconstruction of the density operator from the Radon transform and the direct reconstruction of its Fock-state matrix elements and of its normally ordered moments are discussed. It is found that for finite-order moments the integration over the angle can be reduced to a finite sum over a discrete set of angles. The reconstruction of the Fock-state matrix elements from the normally ordered moments leads to a new representation of the pattern functions by convergent series over even or odd Hermite polynomials which is appropriate for practical calculations. The structure of the pattern functions as first derivatives of the products of normalizable and nonnormalizable eigenfunctions to the number operator is considered from the point of view of this new representation.Comment: To appear on Journal of Modern Optics.Submitted t

    Photon-pair generation in random nonlinear layered structures

    Full text link
    Nonlinearity and sharp transmission spectra of random 1D nonlinear layered structures are combined together to produce photon pairs with extremely narrow spectral bandwidths. Indistinguishable photons in a pair are nearly unentangled. Also two-photon states with coincident frequencies can be conveniently generated in these structures if photon pairs generated into a certain range of emission angles are superposed. If two photons are emitted into two different resonant peaks, the ratio of their spectral bandwidths may differ considerably from one and two photons remain nearly unentangled.Comment: 10 pages, 16 figure

    Toward Global Quantum Communication: Beam Wandering Preserves Nonclassicality

    Full text link
    Tap-proof long-distance quantum communication requires a deep understanding of the strong losses in transmission channels. Here we provide a rigorous treatment of the effects of beam wandering, one of the leading disturbances in atmospheric channels, on the quantum properties of light. From first principles we derive the probability distribution of the beam transmissivity, with the aim to completely characterize the quantum state of light. It turns out that beam wandering may preserve nonclassical effects, such as entanglement, quadrature and photon number squeezing, much better than a standard attenuating channel of the same losses.Comment: published versio

    The 1/N-expansion, quantum-classical correspondence and nonclassical states generation in dissipative higher-order anharmonic oscillators

    Full text link
    We develop a method for the determination of thecdynamics of dissipative quantum systems in the limit of large number of quanta N, based on the 1/N-expansion of Heidmann et al. [ Opt. Commun. 54, 189 (1985) ] and the quantum-classical correspondence. Using this method, we find analytically the dynamics of nonclassical states generation in the higher-order anharmonic dissipative oscillators for an arbitrary temperature of a reservoir. We show that the quantum correction to the classical motion increases with time quadratically up to some maximal value, which is dependent on the degree of nonlinearity and a damping constant, and then it decreases. Similarities and differences with the corresponding behavior of the quantum corrections to the classical motion in the Hamiltonian chaotic systems are discussed. We also compare our results obtained for some limiting cases with the results obtained by using other semiclassical tools and discuss the conditions for validity of our approach.Comment: 15 pages, RevTEX (EPSF-style), 3 figs. Replaced with final version (stylistic corrections

    Testing of quantum phase in matter wave optics

    Full text link
    Various phase concepts may be treated as special cases of the maximum likelihood estimation. For example the discrete Fourier estimation that actually coincides with the operational phase of Noh, Fouge`res and Mandel is obtained for continuous Gaussian signals with phase modulated mean.Since signals in quantum theory are discrete, a prediction different from that given by the Gaussian hypothesis should be obtained as the best fit assuming a discrete Poissonian statistics of the signal. Although the Gaussian estimation gives a satisfactory approximation for fitting the phase distribution of almost any state the optimal phase estimation offers in certain cases a measurable better performance. This has been demonstrated in neutron--optical experiment.Comment: 8 pages, 4 figure
    corecore