60 research outputs found

    Interferometric Mapping of Magnetic fields: NGC2071IR

    Get PDF
    We present polarization maps of NGC2071IR from thermal dust emission at 1.3 mm and from CO J=2→12 \to 1 line emission. The observations were obtained using the Berkeley-Illinois-Maryland Association array in the period 2002-2004. We detected dust and line polarized emission from NGC2071IR that we used to constrain the morphology of the magnetic field. From CO J=2→12 \to 1 polarized emission we found evidence for a magnetic field in the powerful bipolar outflow present in this region. We calculated a visual extinction Av≈26A_{\rm{v}} \approx 26 mag from our dust observations. This result, when compared with early single dish work, seems to show that dust grains emit polarized radiation efficiently at higher densities than previously thought. Mechanical alignment by the outflow is proposed to explain the polarization pattern observed in NGC2071IR, which is consistent with the observed flattening in this source.Comment: 17 pages, 4 Figures, Accepted for publication in Ap

    Spatially-resolved Thermal Continuum Absorption against the Supernova Remnant W49B

    Get PDF
    We present sub-arcminute resolution imaging of the Galactic supernova remnant W49B at 74 MHz (25") and 327 MHz (6"), the former being the lowest frequency at which the source has been resolved. While the 327 MHz image shows a shell-like morphology similar to that seen at higher frequencies, the 74 MHz image is considerably different, with the southwest region of the remnant almost completely attenuated. The implied 74 MHz optical depth (~ 1.6) is much higher than the intrinsic absorption levels seen inside two other relatively young remnants, Cas A and the Crab Nebula, nor are natural variations in the relativistic electron energy spectra expected at such levels. The geometry of the absorption is also inconsistent with intrinsic absorption. We attribute the absorption to extrinsic free-free absorption by a intervening cloud of thermal electrons. Its presence has already been inferred from the low-frequency turnover in the integrated continuum spectrum and from the detection of radio recombination lines toward the remnant. Our observations confirm the basic conclusions of those measurements, and our observations have resolved the absorber into a complex of classical HII regions surrounded either partially or fully by low-density HII gas. We identify this low-density gas as an extended HII region envelope (EHE), whose statistical properties were inferred from low resolution meter- and centimeter-wavelength recombination line observations. Comparison of our radio images with HI and H_2CO observations show that the intervening thermal gas is likely associated with neutral and molecular material as well.Comment: 18 pages, LaTeX with AASTeX-5, 5 figures in 7 PostScript files; accepted for publication in the Ap

    A Low Frequency Survey of the Galactic Plane Near l=11 degrees: Discovery of Three New Supernova Remnants

    Full text link
    We have imaged a 1 deg^2 field centered on the known Galactic supernova remnant (SNR) G11.2-0.3 at 74, 330, and 1465 MHz with the Very Large Array radio telescope (VLA) and 235 MHz with the Giant Metrewave Radio Telescope (GMRT). The 235, 330, and 1465 MHz data have a resolution of 25 arcsec, while the 74 MHz data have a resolution of 100 arcsec. The addition of this low frequency data has allowed us to confirm the previously reported low frequency turnover in the radio continuum spectra of the two known SNRs in the field: G11.2-0.3 and G11.4-0.1 with unprecedented precision. Such low frequency turnovers are believed to arise from free-free absorption in ionized thermal gas along the lines of site to the SNRs. Our data suggest that the 74 MHz optical depths of the absorbing gas is 0.56 and 1.1 for G11.2-0.3 and G11.4-0.1, respectively. In addition to adding much needed low frequency integrated flux measurements for two known SNRs, we have also detected three new SNRs: G11.15-0.71, G11.03-0.05, and G11.18+0.11. These new SNRs have integrated spectral indices between -0.44 and -0.80. Because of confusion with thermal sources, the high resolution (compared to previous Galactic radio frequency surveys) and surface brightness sensitivity of our observations have been essential to the identification of these new SNRs. With this study we have more than doubled the number of SNRs within just a 1 deg^2 field of view in the inner Galactic plane. This result suggests that future low frequency observations of the Galactic plane of similar quality may go a long way toward alleviating the long recognized incompleteness of Galactic SNR catalogs.Comment: 31 pages, 9 figures. Figure 7 is in color. Accepted to A

    The W51 Giant Molecular Cloud

    Get PDF
    We present 45"-47" angular resolution maps at 50" sampling of the 12CO and 13CO J=1-0 emission toward a 1.39 deg x 1.33 deg region in the W51 HII region complex. These data permit the spatial and kinematic separation of several spectral features observed along the line of sight to W51, and establish the presence of a massive (1.2 x 10^6 Mo), large (83 pc x 114 pc) giant molecular cloud (GMC), defined as the W51 GMC, centered at (l,b,V) = (49.5 deg, -0.2 deg, 61 km/s). A second massive (1.9 x 10^5 Mo), elongated (136 pc x 22 pc) molecular cloud is found at velocities of about 68 km/s along the southern edge of the W51 GMC. Of the five radio continuum sources that classically define the W51 region, the brightest source at lambda 6cm (G49.5-0.4) is spatially and kinematically coincident with the W51 GMC and three (G48.9-0.3, G49.1-0.4, and G49.2-0.4) are associated with the 68 km/s cloud. Published absorption line spectra indicate that the fifth prominent continuum source (G49.4-0.3) is located behind the W51 molecular cloud. The W51 GMC is among the upper 1% of clouds in the Galactic disk by size and the upper 5-10% by mass. While the W51 GMC is larger and more massive than any nearby molecular cloud, the average H2 column density is not unusual given its size and the mean H2 volume density is comparable to that in nearby clouds. The W51 GMC is also similar to other clouds in that most of the molecular mass is contained in a diffuse envelope that is not currently forming massive stars. We speculate that much of the massive star formation activity in this region has resulted from a collision between the 68 km/s cloud and the W51 GMC.Comment: Accepted for publication by the Astronomical Journal. 21 pages, plus 7 figures and 1 tabl

    Arcsecond Images of CH3CN Toward W75N

    Full text link
    CH3CN (J=6-5) was observed with a resolution of 2'' toward W75N using the BIMA interferometer. Two continuum sources were detected at 3 mm, designated MM1 and MM2 in previous studies. Alignment of two mm continuum sources with the outflow axis from MM1 suggests that these continuum sources may be the result of the outflow interacting with the interstellar medium. MM1 is coincident with compact CH3CN emission. CH3CN was not detected toward MM2. The distribution of optical depth is derived. An excitation analysis was not done because of large line optical depths.Comment: 8 pages, 4 figures, 2 tables. Accepted for publication in Ap

    A disk of dust and molecular gas around a high-mass protostar

    Full text link
    The processes leading to the birth of low-mass stars such as our Sun have been well studied, but the formation of high-mass (> 8 x Sun's mass) stars has heretofore remained poorly understood. Recent observational studies suggest that high-mass stars may form in essentially the same way as low-mass stars, namely via an accretion process, instead of via merging of several low-mass (< 8 Msun) stars. However, there is as yet no conclusive evidence. Here, we report the discovery of a flattened disk-like structure observed at submillimeter wavelengths, centered on a massive 15 Msun protostar in the Cepheus-A region. The disk, with a radius of about 330 astronomical units (AU) and a mass of 1 to 8 Msun, is detected in dust continuum as well as in molecular line emission. Its perpendicular orientation to, and spatial coincidence with the central embedded powerful bipolar radio jet, provides the best evidence yet that massive stars form via disk accretion in direct analogy to the formation of low-mass stars

    Physical Conditions in the Foreground Gas of Reflection Nebulae: NGC 2023, vdB 102, and NGC 7023

    Get PDF
    High resolution optical spectra of HD 37903 and HD 147009, which illuminate the reflection nebulae, NGC 2023 and vdB 102, were obtained for comparison with our results for HD 200775 and NGC 7023. Ground-based measurements of the molecules, CH, C2_2, and CN, and the atoms, Na I and K I, were analyzed to extract physical conditions in the foreground cloud. Estimates of the gas density, gas temperature and flux of ultraviolet radiation were derived and were compared with the results from infrared and radio studies of the main molecular cloud. The conditions are similar to those found in studies of diffuse clouds. The foreground material is less dense than the gas in the molecular cloud behind the star(s). The gas temperature was set at 40 K, the temperature determined for the foreground gas in NGC 7023. The flux of ultraviolet radiation was found to be less intense than in the molecular material behind the star(s). The column densities of Na I and K I were reproduced reasonably well when the extinction curve for the specific line of sight was adopted. We obtained NEWSIPS data from the IUE archive for HD 37903 and HD 200775. The ultraviolet data on C I and CO allow extraction of the physical conditions by alternate methods. General agreement among the various diagnostics was found, leading to self-consistent pictures of the foreground photodissociation regions. An Appendix describes checks on the usefulness of IUE NEWSIPS data for interstellar studies. (Abridged)Comment: 65 pages, 18 tables, 14 figures, Accepted for publication in ApJ

    Carbon Recombination Lines from the Galactic Plane at 34.5 & 328 MHz

    Get PDF
    We present results of a search for carbon recombination lines in the Galaxy at 34.5 MHz (C575α575\alpha) made using the dipole array at Gauribidanur near Bangalore. Observations made towards 32 directions, led to detections of lines in absorption at nine positions. Followup observations at 328 MHz (C272α272\alpha) using the Ooty Radio Telescope detected these lines in emission. A VLA D-array observation of one of the positions at 330 MHz yielded no detection implying a lower limit of 10' for the angular size of the line forming region. The longitude-velocity distribution of the observed carbon lines indicate that the line forming region are located mainly between 4 kpc and 7 kpc from the Galactic centre. Combining our results with published carbon recombination line data near 76 MHz (\nocite{erickson:95} Erickson \et 1995) we obtain constraints on the physical parameters of the line forming regions. We find that if the angular size of the line forming regions is ≄4∘\ge 4^{\circ}, then the range of parameters that fit the data are: \Te =20−40= 20-40 K, \ne ∌0.1−0.3\sim 0.1-0.3 \cm3 and pathlengths ∌0.07−0.9\sim 0.07-0.9 pc which may correspond to thin photo-dissociated regions around molecular clouds. On the other hand, if the line forming regions are ∌2∘\sim 2^{\circ} in extent, then warmer gas (\Te ∌60−300\sim 60-300 K) with lower electron densities (\ne ∌0.03−0.05\sim 0.03-0.05 \cm3) extending over several tens of parsecs along the line of sight and possibly associated with atomic \HI gas can fit the data. Based on the range of derived parameters, we suggest that the carbon line regions are most likely associated with photo-dissociation regions.Comment: To appear in Journal of Astrophysics & Astronomy, March 200

    Photoevaporation Flows in Blister HII Regions: I. Smooth Ionization Fronts and Application to the Orion Nebula

    Full text link
    We present hydrodynamical simulations of the photoevaporation of a cloud with large-scale density gradients, giving rise to an ionized, photoevaporation flow. The flow is found to be approximately steady during the large part of its evolution, during which it can resemble a "champagne flow" or a "globule flow" depending on the curvature of the ionization front. The distance from source to ionization front and the front curvature uniquely determine the structure of the flow, with the curvature depending on the steepness of the lateral density gradient in the neutral cloud. We compare these simulations with both new and existing observations of the Orion nebula and find that a model with a mildly convex ionization front can reproduce the profiles of emission measure, electron density, and mean line velocity for a variety of emitting ions on scales of 10^{17} to 10^{18} cm. The principal failure of our model is that we cannot explain the large observed widths of the [O I] 6300 Angstrom line that forms at the ionization front.Comment: 21 pages, accepted for publication in The Astrophysical Journa
    • 

    corecore