60 research outputs found
Interferometric Mapping of Magnetic fields: NGC2071IR
We present polarization maps of NGC2071IR from thermal dust emission at 1.3
mm and from CO J= line emission. The observations were obtained using
the Berkeley-Illinois-Maryland Association array in the period 2002-2004. We
detected dust and line polarized emission from NGC2071IR that we used to
constrain the morphology of the magnetic field. From CO J= polarized
emission we found evidence for a magnetic field in the powerful bipolar outflow
present in this region. We calculated a visual extinction mag from our dust observations. This result, when compared with early
single dish work, seems to show that dust grains emit polarized radiation
efficiently at higher densities than previously thought. Mechanical alignment
by the outflow is proposed to explain the polarization pattern observed in
NGC2071IR, which is consistent with the observed flattening in this source.Comment: 17 pages, 4 Figures, Accepted for publication in Ap
Spatially-resolved Thermal Continuum Absorption against the Supernova Remnant W49B
We present sub-arcminute resolution imaging of the Galactic supernova remnant
W49B at 74 MHz (25") and 327 MHz (6"), the former being the lowest frequency at
which the source has been resolved. While the 327 MHz image shows a shell-like
morphology similar to that seen at higher frequencies, the 74 MHz image is
considerably different, with the southwest region of the remnant almost
completely attenuated. The implied 74 MHz optical depth (~ 1.6) is much higher
than the intrinsic absorption levels seen inside two other relatively young
remnants, Cas A and the Crab Nebula, nor are natural variations in the
relativistic electron energy spectra expected at such levels. The geometry of
the absorption is also inconsistent with intrinsic absorption. We attribute the
absorption to extrinsic free-free absorption by a intervening cloud of thermal
electrons. Its presence has already been inferred from the low-frequency
turnover in the integrated continuum spectrum and from the detection of radio
recombination lines toward the remnant. Our observations confirm the basic
conclusions of those measurements, and our observations have resolved the
absorber into a complex of classical HII regions surrounded either partially or
fully by low-density HII gas. We identify this low-density gas as an extended
HII region envelope (EHE), whose statistical properties were inferred from low
resolution meter- and centimeter-wavelength recombination line observations.
Comparison of our radio images with HI and H_2CO observations show that the
intervening thermal gas is likely associated with neutral and molecular
material as well.Comment: 18 pages, LaTeX with AASTeX-5, 5 figures in 7 PostScript files;
accepted for publication in the Ap
A Low Frequency Survey of the Galactic Plane Near l=11 degrees: Discovery of Three New Supernova Remnants
We have imaged a 1 deg^2 field centered on the known Galactic supernova
remnant (SNR) G11.2-0.3 at 74, 330, and 1465 MHz with the Very Large Array
radio telescope (VLA) and 235 MHz with the Giant Metrewave Radio Telescope
(GMRT). The 235, 330, and 1465 MHz data have a resolution of 25 arcsec, while
the 74 MHz data have a resolution of 100 arcsec. The addition of this low
frequency data has allowed us to confirm the previously reported low frequency
turnover in the radio continuum spectra of the two known SNRs in the field:
G11.2-0.3 and G11.4-0.1 with unprecedented precision. Such low frequency
turnovers are believed to arise from free-free absorption in ionized thermal
gas along the lines of site to the SNRs. Our data suggest that the 74 MHz
optical depths of the absorbing gas is 0.56 and 1.1 for G11.2-0.3 and
G11.4-0.1, respectively. In addition to adding much needed low frequency
integrated flux measurements for two known SNRs, we have also detected three
new SNRs: G11.15-0.71, G11.03-0.05, and G11.18+0.11. These new SNRs have
integrated spectral indices between -0.44 and -0.80. Because of confusion with
thermal sources, the high resolution (compared to previous Galactic radio
frequency surveys) and surface brightness sensitivity of our observations have
been essential to the identification of these new SNRs. With this study we have
more than doubled the number of SNRs within just a 1 deg^2 field of view in the
inner Galactic plane. This result suggests that future low frequency
observations of the Galactic plane of similar quality may go a long way toward
alleviating the long recognized incompleteness of Galactic SNR catalogs.Comment: 31 pages, 9 figures. Figure 7 is in color. Accepted to A
The W51 Giant Molecular Cloud
We present 45"-47" angular resolution maps at 50" sampling of the 12CO and
13CO J=1-0 emission toward a 1.39 deg x 1.33 deg region in the W51 HII region
complex. These data permit the spatial and kinematic separation of several
spectral features observed along the line of sight to W51, and establish the
presence of a massive (1.2 x 10^6 Mo), large (83 pc x 114 pc) giant molecular
cloud (GMC), defined as the W51 GMC, centered at (l,b,V) = (49.5 deg, -0.2 deg,
61 km/s). A second massive (1.9 x 10^5 Mo), elongated (136 pc x 22 pc)
molecular cloud is found at velocities of about 68 km/s along the southern edge
of the W51 GMC. Of the five radio continuum sources that classically define the
W51 region, the brightest source at lambda 6cm (G49.5-0.4) is spatially and
kinematically coincident with the W51 GMC and three (G48.9-0.3, G49.1-0.4, and
G49.2-0.4) are associated with the 68 km/s cloud. Published absorption line
spectra indicate that the fifth prominent continuum source (G49.4-0.3) is
located behind the W51 molecular cloud. The W51 GMC is among the upper 1% of
clouds in the Galactic disk by size and the upper 5-10% by mass. While the W51
GMC is larger and more massive than any nearby molecular cloud, the average H2
column density is not unusual given its size and the mean H2 volume density is
comparable to that in nearby clouds. The W51 GMC is also similar to other
clouds in that most of the molecular mass is contained in a diffuse envelope
that is not currently forming massive stars. We speculate that much of the
massive star formation activity in this region has resulted from a collision
between the 68 km/s cloud and the W51 GMC.Comment: Accepted for publication by the Astronomical Journal. 21 pages, plus
7 figures and 1 tabl
Arcsecond Images of CH3CN Toward W75N
CH3CN (J=6-5) was observed with a resolution of 2'' toward W75N using the
BIMA interferometer. Two continuum sources were detected at 3 mm, designated
MM1 and MM2 in previous studies. Alignment of two mm continuum sources with the
outflow axis from MM1 suggests that these continuum sources may be the result
of the outflow interacting with the interstellar medium. MM1 is coincident with
compact CH3CN emission. CH3CN was not detected toward MM2. The distribution of
optical depth is derived. An excitation analysis was not done because of large
line optical depths.Comment: 8 pages, 4 figures, 2 tables. Accepted for publication in Ap
A disk of dust and molecular gas around a high-mass protostar
The processes leading to the birth of low-mass stars such as our Sun have
been well studied, but the formation of high-mass (> 8 x Sun's mass) stars has
heretofore remained poorly understood. Recent observational studies suggest
that high-mass stars may form in essentially the same way as low-mass stars,
namely via an accretion process, instead of via merging of several low-mass (<
8 Msun) stars. However, there is as yet no conclusive evidence. Here, we report
the discovery of a flattened disk-like structure observed at submillimeter
wavelengths, centered on a massive 15 Msun protostar in the Cepheus-A region.
The disk, with a radius of about 330 astronomical units (AU) and a mass of 1 to
8 Msun, is detected in dust continuum as well as in molecular line emission.
Its perpendicular orientation to, and spatial coincidence with the central
embedded powerful bipolar radio jet, provides the best evidence yet that
massive stars form via disk accretion in direct analogy to the formation of
low-mass stars
Physical Conditions in the Foreground Gas of Reflection Nebulae: NGC 2023, vdB 102, and NGC 7023
High resolution optical spectra of HD 37903 and HD 147009, which illuminate
the reflection nebulae, NGC 2023 and vdB 102, were obtained for comparison with
our results for HD 200775 and NGC 7023. Ground-based measurements of the
molecules, CH, C, and CN, and the atoms, Na I and K I, were analyzed to
extract physical conditions in the foreground cloud. Estimates of the gas
density, gas temperature and flux of ultraviolet radiation were derived and
were compared with the results from infrared and radio studies of the main
molecular cloud. The conditions are similar to those found in studies of
diffuse clouds. The foreground material is less dense than the gas in the
molecular cloud behind the star(s). The gas temperature was set at 40 K, the
temperature determined for the foreground gas in NGC 7023. The flux of
ultraviolet radiation was found to be less intense than in the molecular
material behind the star(s). The column densities of Na I and K I were
reproduced reasonably well when the extinction curve for the specific line of
sight was adopted. We obtained NEWSIPS data from the IUE archive for HD 37903
and HD 200775. The ultraviolet data on C I and CO allow extraction of the
physical conditions by alternate methods. General agreement among the various
diagnostics was found, leading to self-consistent pictures of the foreground
photodissociation regions. An Appendix describes checks on the usefulness of
IUE NEWSIPS data for interstellar studies. (Abridged)Comment: 65 pages, 18 tables, 14 figures, Accepted for publication in ApJ
Carbon Recombination Lines from the Galactic Plane at 34.5 & 328 MHz
We present results of a search for carbon recombination lines in the Galaxy
at 34.5 MHz (C) made using the dipole array at Gauribidanur near
Bangalore. Observations made towards 32 directions, led to detections of lines
in absorption at nine positions. Followup observations at 328 MHz
(C) using the Ooty Radio Telescope detected these lines in emission.
A VLA D-array observation of one of the positions at 330 MHz yielded no
detection implying a lower limit of 10' for the angular size of the line
forming region.
The longitude-velocity distribution of the observed carbon lines indicate
that the line forming region are located mainly between 4 kpc and 7 kpc from
the Galactic centre. Combining our results with published carbon recombination
line data near 76 MHz (\nocite{erickson:95} Erickson \et 1995) we obtain
constraints on the physical parameters of the line forming regions. We find
that if the angular size of the line forming regions is , then
the range of parameters that fit the data are: \Te K, \ne \cm3 and pathlengths pc which may correspond to thin
photo-dissociated regions around molecular clouds. On the other hand, if the
line forming regions are in extent, then warmer gas (\Te K) with lower electron densities (\ne \cm3) extending
over several tens of parsecs along the line of sight and possibly associated
with atomic \HI gas can fit the data. Based on the range of derived parameters,
we suggest that the carbon line regions are most likely associated with
photo-dissociation regions.Comment: To appear in Journal of Astrophysics & Astronomy, March 200
Photoevaporation Flows in Blister HII Regions: I. Smooth Ionization Fronts and Application to the Orion Nebula
We present hydrodynamical simulations of the photoevaporation of a cloud with
large-scale density gradients, giving rise to an ionized, photoevaporation
flow. The flow is found to be approximately steady during the large part of its
evolution, during which it can resemble a "champagne flow" or a "globule flow"
depending on the curvature of the ionization front. The distance from source to
ionization front and the front curvature uniquely determine the structure of
the flow, with the curvature depending on the steepness of the lateral density
gradient in the neutral cloud. We compare these simulations with both new and
existing observations of the Orion nebula and find that a model with a mildly
convex ionization front can reproduce the profiles of emission measure,
electron density, and mean line velocity for a variety of emitting ions on
scales of 10^{17} to 10^{18} cm. The principal failure of our model is that we
cannot explain the large observed widths of the [O I] 6300 Angstrom line that
forms at the ionization front.Comment: 21 pages, accepted for publication in The Astrophysical Journa
- âŠ