13,096 research outputs found

    Quantum Plasmonics

    Get PDF
    Quantum plasmonics is an exciting subbranch of nanoplasmonics where the laws of quantum theory are used to describe light–matter interactions on the nanoscale. Plasmonic materials allow extreme subdiffraction confinement of (quantum or classical) light to regions so small that the quantization of both light and matter may be necessary for an accurate description. State-of-the-art experiments now allow us to probe these regimes and push existing theories to the limits which opens up the possibilities of exploring the nature of many-body collective oscillations as well as developing new plasmonic devices, which use the particle quality of light and the wave quality of matter, and have a wealth of potential applications in sensing, lasing, and quantum computing. This merging of fundamental condensed matter theory with application-rich electromagnetism (and a splash of quantum optics thrown in) gives rise to a fascinating area of modern physics that is still very much in its infancy. In this review, we discuss and compare the key models and experiments used to explore how the quantum nature of electrons impacts plasmonics in the context of quantum size corrections of localized plasmons and quantum tunneling between nanoparticle dimers. We also look at some of the remarkable experiments that are revealing the quantum nature of surface plasmon polaritons

    Evolution of superconductivity in Fe-based systems with doping

    Full text link
    We study the symmetry and the structure of the gap in Fe-based superconductors by decomposing the pairing interaction obtained in the RPA into s- and d-wave components and into contributions from scattering between different Fermi surfaces. We show that each interaction is well approximated by the lowest angular harmonics and use this simplification to analyze the origin of the attraction in the two channels, the competition between s- and d-wave solutions, and the origin of superconductivity in heavily doped systems, when only electron or only hole pockets are present.Comment: 4pp, 2 figures, 2 table

    Guided plasmons in graphene p-n junctions

    Full text link
    Spatial separation of electrons and holes in graphene gives rise to existence of plasmon waves confined to the boundary region. Theory of such guided plasmon modes within hydrodynamics of electron-hole liquid is developed. For plasmon wavelengths smaller than the size of charged domains plasmon dispersion is found to be \omega ~ q^(1/4). Frequency, velocity and direction of propagation of guided plasmon modes can be easily controlled by external electric field. In the presence of magnetic field spectrum of additional gapless magnetoplasmon excitations is obtained. Our findings indicate that graphene is a promising material for nanoplasmonics.Comment: 4+ pages, 1 figure; published version, numerical estimates adde

    Phase behavior of the Confined Lebwohl-Lasher Model

    Get PDF
    The phase behavior of confined nematogens is studied using the Lebwohl-Lasher model. For three dimensional systems the model is known to exhibit a discontinuous nematic-isotropic phase transition, whereas the corresponding two dimensional systems apparently show a continuous Berezinskii-Kosterlitz-Thouless like transition. In this paper we study the phase transitions of the Lebwohl-Lasher model when confined between planar slits of different widths in order to establish the behavior of intermediate situations between the pure planar model and the three-dimensional system, and compare with previous estimates for the critical thickness, i.e. the slit width at which the transition switches from continuous to discontinuous.Comment: Submitted to Physical Review

    Let Me Vote! An experimental study of vote rotation in committees

    Get PDF
    We conduct an experiment to investigate (i) whether rotation in voting increases a committee’s efficiency, and (ii) the extent to which rotation is likely to critically influence collective and individual welfare. The experiment is based on the idea that voters have to trade-off individual versus common interests. Our findings indicate that the choice of a rotation scheme has important consequences: it ‘pays’ to be allowed to vote, as voting committee members earn significantly more than non-voting members. Hence, rotation is not neutral. We also find that smaller committees decide faster and block fewer decisions. This reduces frustration among committee members

    The Effect of Focusing and Caustics on Exit Phenomena in Systems Lacking Detailed Balance

    Full text link
    We study the trajectories followed by a particle subjected to weak noise when escaping from the domain of attraction of a stable fixed point. If detailed balance is absent, a _focus_ may occur along the most probable exit path, leading to a breakdown of symmetry (if present). The exit trajectory bifurcates, and the exit location distribution may become `skewed' (non-Gaussian). The weak-noise asymptotics of the mean escape time are strongly affected. Our methods extend to the study of skewed exit location distributions in stochastic models without symmetry.Comment: REVTEX macros (latest version). Two accompanying PS figures, one of which is large (over 600K unpacked

    Lifting of nodes by disorder in extended-ss state superconductors: application to ferropnictides

    Full text link
    We show, using a simple model, how ordinary disorder can gap an extended-ss (A1gA_{1g}) symmetry superconducting state with nodes. The concommitant crossover of thermodynamic properties, particularly the TT-dependence of the superfluid density, from pure power law behavior to an activated one is exhibited. We discuss applications of this scenario to experiments on the ferropnictide superconductors.Comment: 9 page

    Grating-coupled excitation of multiple surface plasmon-polariton waves

    Full text link
    The excitation of multiple surface-plasmon-polariton (SPP) waves of different linear polarization states and phase speeds by a surface-relief grating formed by a metal and a rugate filter, both of finite thickness, was studied theoretically, using rigorous coupled-wave-analysis. The incident plane wave can be either p or s polarized. The excitation of SPP waves is indicated by the presence of those peaks in the plots of absorbance vs. the incidence angle that are independent of the thickness of the rugate filter. The absorbance peaks representing the excitation of s-polarized SPP waves are narrower than those representing p-polarized SPP waves. Two incident plane waves propagating in different directions may excite the same SPP wave. A line source could excite several SPP waves simultaneously
    • …
    corecore