146 research outputs found

    Electronic structure changes of Si(001)-(2x1) from subsurface Mn observed by STM

    Get PDF
    The deposition of Mn atoms onto the Si(001)-(2x1) reconstructed surface has been studied using scanning tunneling microscopy (STM) and first-principles electronic structure calculations. Room-temperature deposition of 0.1 ML (monolayer) of Mn gives rise to a disordered surface structure. After in situ annealing between 300 and 700 °C, most of the Mn is incorporated into three-dimensional manganese silicide islands, and Si dimer rows reappear in the STM images on most of the substrate surface. At the same time, rowlike structures are visible in the atomic-scale STM images. A comparison with calculated STM images provides evidence that Mn atoms are incorporated into the row structures in subsurface interstitial sites, which are the lowest-energy position for Mn on Si(001). The subsurface Mn alters the height and local density of states of the Si dimer atoms, causing them to appear 0.6 Å higher than a neighboring Si dimer with no Mn below. This height difference that allows the detection the subsurface Mn results from a subtle interplay of geometrical and electronic effects

    Angiocrine signals regulate quiescence and therapy resistance in bone metastasis.

    Get PDF
    Bone provides supportive microenvironments for hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) and is a frequent site of metastasis. While incidences of bone metastases increase with age, the properties of the bone marrow microenvironment that regulate dormancy and reactivation of disseminated tumor cells (DTCs) remain poorly understood. Here, we elucidate the age-associated changes in the bone secretome that trigger proliferation of HSCs, MSCs, and DTCs in the aging bone marrow microenvironment. Remarkably, a bone-specific mechanism involving expansion of pericytes and induction of quiescence-promoting secretome rendered this proliferative microenvironment resistant to radiation and chemotherapy. This bone-specific expansion of pericytes was triggered by an increase in PDGF signaling via remodeling of specialized type H blood vessels in response to therapy. The decline in bone marrow pericytes upon aging provides an explanation for loss of quiescence and expansion of cancer cells in the aged bone marrow microenvironment. Manipulation of blood flow - specifically, reduced blood flow - inhibited pericyte expansion, regulated endothelial PDGF-B expression, and rendered bone metastatic cancer cells susceptible to radiation and chemotherapy. Thus, our study provides a framework to recognize bone marrow vascular niches in age-associated increases in metastasis and to target angiocrine signals in therapeutic strategies to manage bone metastasis

    New Platinum(II) Complexes Affecting Different Biomolecular Targets in Resistant Ovarian Carcinoma Cells

    Get PDF
    Resistance to platinum-based anticancer drugs represents an important limit for their clinical effectiveness and one of the most important field of investigation in the context of platinum compounds. From our previous studies, PtII complexes containing the triphenylphosphino moiety have been emerging as promising agents, showing significant cytotoxicity to resistant ovarian carcinoma cells. Two brominated triphenylphosphino trans-platinum derivatives were prepared and evaluated on human tumor cell lines, sensitive and resistant to cisplatin. The new complexes exert a notable antiproliferative effect on resistant ovarian carcinoma cells, showing a remarkable intracellular accumulation and the ability to interact with different intracellular targets. The interaction with DNA, the collapse of mitochondrial transmembrane potential, and the impairment of intracellular redox state were demonstrated. Moreover, a selectivity towards the selenocysteine of thioredoxin reductase was observed. The mechanism of action is discussed with regard to the resistance phenomenon in ovarian carcinoma cells

    Platinum(II) Complexes Bearing Triphenylphosphine and Chelating Oximes: Antiproliferative Effect and Biological Profile in Resistant Cells

    Get PDF
    Platinum(II) complexes of the type [Pt(Cl)(PPh3){(κ2-N,O)-(1{C(R)=N(OH)-2(O)C6H4})}] with R=Me, H, (1 and 2) were synthesized and characterized. Single-crystal X-ray diffraction confirmed the proposed (SP4-3) configuration for 1. Study of the antiproliferative activity, performed on a panel of human tumor cell lines and on mesothelial cells, highlighted complex 2 as the more effective. In particular, it showed a remarkable cytotoxicity in ovarian carcinoma cells (A2780) and interestingly, a significant antiproliferative effect on cisplatin resistant cells (A2780cis). Investigation into the intracellular mechanism of action demonstrated that 2 had a lower ability to platinate DNA than did cisplatin, which was taken as reference, and a notably higher uptake in resistant cells. A significant accumulation in mitochondria, along with the ability to induce concentration-dependent mitochondrial membrane depolarization and intracellular reactive oxygen species production, allowed us to propose a mitochondrion-mediated pathway as responsible for the interesting cytotoxic profile of complex 2

    Co-ordination between Rashba spin-orbital interaction and space charge effect and enhanced spin injection into semiconductors

    Full text link
    We consider the effect of the Rashba spin-orbital interaction and space charge in a ferromagnet-insulator/semiconductor/insulator-ferromagnet junction where the spin current is severely affected by the doping, band structure and charge screening in the semiconductor. In diffusion region, if the the resistance of the tunneling barriers is comparable to the semiconductor resistance, the magnetoresistance of this junction can be greatly enhanced under appropriate doping by the co-ordination between the Rashba effect and screened Coulomb interaction in the nonequilibrium transport processes within Hartree approximation.Comment: 4 pages, 3 figure
    • …
    corecore