5 research outputs found

    Π‘ΠΈΠ½Ρ‚Π΅Π· Π²Ρ‹ΡΡˆΠΈΡ… спиртов Π½Π° LaCo- ΠΈ LaCoCu-пСровскитах, ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… сСрСбром

    Get PDF
    LaCoO3 and LaCo0.7Cu0.3O3 perovskites supported on highly dispersed mesoporous silica KIT‑6 were impregnated with silver nitrate (nAg/nCo = 4/99 and 8/99). The phase composition of the initial samples and samples after catalytic tests in syngas conversion and catalytic characteristics have been investigated. The regularities of the transformation of samples in the process of reduction in a hydrogen-containing gas have been studied. It is shown that, for the LaCoO3 sample, with an increase in the silver content, the activity and selectivity for higher alcohols increase from 6 to 23 %. The maximum interaction of cobalt with silver is observed at a silver content of 4 %. At a higher content, part of the cobalt is reduced regardless of the influence of silver due to its faster agglomeration. This leads to a stronger amorphization of the reduced sample and a sharp increase in its activity. The LaCo0.7Cu0.3O3 sample exhibits a higher selectivity for higher alcohols (36 %) due to the effect of copper. Silver promotion of the sample allows achieving the maximum selectivity for higher alcohols of 56 % with a silver content of 4 %. A further increase in the silver content leads to a sharp decrease in the selectivity for higher alcohols (41 %) and the appearance of CO2 due to the saturation of copper-containing particles with silver and a decrease in the interaction of cobalt with copperΠŸΠ΅Ρ€ΠΎΠ²ΡΠΊΠΈΡ‚Ρ‹ LaCoO3 ΠΈ LaCo0.7Cu0.3O3, нанСсСнныС Π½Π° высокодиспСрсный мСзопористый ΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌ KIT‑6, ΠΏΡ€ΠΎΠΏΠΈΡ‚Ρ‹Π²Π°Π»ΠΈΡΡŒ Π½ΠΈΡ‚Ρ€Π°Ρ‚ΠΎΠΌ сСрСбра (nAg/nCo = 4/99 ΠΈ 8/99). ИсслСдован Ρ„Π°Π·ΠΎΠ²Ρ‹ΠΉ состав исходных ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² ΠΈ ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² послС каталитичСских испытаний Π² конвСрсии синтСз-Π³Π°Π·Π° ΠΈ каталитичСскиС характСристики ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ². Π˜Π·ΡƒΡ‡Π΅Π½Ρ‹ закономСрности прСвращСния ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² Π² процСссС восстановлСния Π² водородсодСрТащСм Π³Π°Π·Π΅. Показано, Ρ‡Ρ‚ΠΎ для ΠΎΠ±Ρ€Π°Π·Ρ†Π° LaCoO3 с ростом содСрТания сСрСбра увСличиваСтся Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΈ ΡΠ΅Π»Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΏΠΎ Π²Ρ‹ΡΡˆΠΈΠΌ спиртам с 6 Π΄ΠΎ 23 %. МаксимальноС взаимодСйствиС ΠΊΠΎΠ±Π°Π»ΡŒΡ‚Π° с сСрСбром Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ ΠΏΡ€ΠΈ содСрТании 4 % сСрСбра. ΠŸΡ€ΠΈ большСм содСрТании Ρ‡Π°ΡΡ‚ΡŒ ΠΊΠΎΠ±Π°Π»ΡŒΡ‚Π° восстанавливаСтся нСзависимо ΠΎΡ‚ влияния сСрСбра вслСдствиС Π΅Π³ΠΎ Π±ΠΎΠ»Π΅Π΅ быстрой Π°Π³Π»ΠΎΠΌΠ΅Ρ€Π°Ρ†ΠΈΠΈ. Π­Ρ‚ΠΎ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Π±ΠΎΠ»Π΅Π΅ сильной Π°ΠΌΠΎΡ€Ρ„ΠΈΠ·Π°Ρ†ΠΈΠΈ восстановлСнного ΠΎΠ±Ρ€Π°Π·Ρ†Π° ΠΈ Ρ€Π΅Π·ΠΊΠΎΠΌΡƒ росту Π΅Π³ΠΎ активности. ΠžΠ±Ρ€Π°Π·Π΅Ρ† LaCo0.7Cu0.3O3 проявляСт Π±ΠΎΠ»Π΅Π΅ Π²Ρ‹ΡΠΎΠΊΡƒΡŽ ΡΠ΅Π»Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΏΠΎ Π²Ρ‹ΡΡˆΠΈΠΌ спиртам (36 %) благодаря влиянию ΠΌΠ΅Π΄ΠΈ. ΠŸΡ€ΠΎΠΌΠΎΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΎΠ±Ρ€Π°Π·Ρ†Π° сСрСбром позволяСт Π΄ΠΎΡΡ‚ΠΈΡ‡ΡŒ максимальной сСлСктивности ΠΏΠΎ Π²Ρ‹ΡΡˆΠΈΠΌ спиртам Π² 56 % ΠΏΡ€ΠΈ содСрТании сСрСбра Π² 4 %. Π”Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠ΅Π΅ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ содСрТания сСрСбра ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Ρ€Π΅Π·ΠΊΠΎΠΌΡƒ сниТСнию сСлСктивности ΠΏΠΎ Π²Ρ‹ΡΡˆΠΈΠΌ спиртам (41 %) ΠΈ появлСнию CO2 вслСдствиС насыщСния ΠΌΠ΅Π΄ΡŒΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Ρ‰ΠΈΡ… частиц сСрСбром ΠΈ сниТСнию взаимодСйствия ΠΊΠΎΠ±Π°Π»ΡŒΡ‚Π° с мСдь

    Synthesis of LaCoO₃in Mild Hydrothermal Conditions

    Get PDF
    РассмотрСны закономСрности формирования оксида LaCoO3 со структурой Ρ‚ΠΈΠΏΠ° пСровскита ΠΈΠ· ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²Π΅Π½Π½ΠΈΠΊΠΎΠ², ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Ρ†ΠΈΡ‚Ρ€Π°Ρ‚Π½Ρ‹ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΈ ΠΏΠΎ ΠΎΡ€ΠΈΠ³ΠΈΠ½Π°Π»ΡŒΠ½ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ΅ осаТдСния Π² условиях мягкого Π³ΠΈΠ΄Ρ€ΠΎΡ‚Π΅Ρ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ синтСза с использованиСм органичСских Ρ‚Π΅ΠΌΠΏΠ»Π°Ρ‚ΠΎΠ²: этилСнгликоля, D-Π³Π»ΡŽΠΊΠΎΠ·Ρ‹, D-Π³Π°Π»Π°ΠΊΡ‚ΠΎΠ·Ρ‹ ΠΈ D-Ρ„Ρ€ΡƒΠΊΡ‚ΠΎΠ·Ρ‹. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Π°Ρ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° синтСза обСспСчиваСт Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡƒΡŽ Π³ΠΎΠΌΠΎΠ³Π΅Π½ΠΈΠ·Π°Ρ†ΠΈΡŽ ΠΊΠ°Ρ‚ΠΈΠΎΠ½ΠΎΠ² Π² ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌΠΎΠΌ соСдинСнии ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²Π΅Π½Π½ΠΈΠΊΠ΅ ΠΈ Π³ΠΎΠΌΠΎΡ„Π°Π·Π½ΠΎΡΡ‚ΡŒ оксидного соСдинСнияRegularities of formation of LaCoO3 oxide with a perovskite-type structure from precursors obtained by the citrate method and the original deposition method under conditions of mild hydrothermal synthesis using organic templates: ethylene glycol, D-glucose, D-galactose and D-fructose are considered. The proposed method of synthesis provides the necessary homogenization of cations in the resulting precursor compound and the homogeneous nature of the oxide compound. The absence at the final stage of the synthesis of reducing conditions makes it possible to further modify the formed perovskite with noble metal

    Interaction of hydrogen with Cu-Zn mixed oxide model methanol synthesis catalyst

    No full text
    ENERGIE:MATERIAUX+HJOInteraction of hydrogen with model Cu-Zn methanol synthesis catalyst prepared by decomposition of mixed hydroxicarbonate is studied by inelastic neutron scattering, in situ FTIR/MS, and thermal analysis. Reduced (Cu-0.08,Zn-0.92)O mixed oxide accumulates 6H/Cu, mainly as hydride, hydroxyl and formate species. The reduction of copper in the (Cu,Zn)O mixed oxide occurs via a reversible redox interaction with H-2 and absorption of protons as OH--groups with nu =3250 cm(-1) and delta approximate to 1430-1480 cm(-1). Kinetic and thermodynamic parameters of this process are evaluated. The weight loss during the reduction is due to the decomposition of the residual carbonate groups to CO2 via formate intermediates, which occurs in the presence of hydrogen. Exposure of (Cu,Zn)O to air prior to the reduction strongly affects the kinetic parameters of the reduction process. (C) 2013 Elsevier B.V. All rights reserved
    corecore