138 research outputs found
Stationary rotation of the unbalanced rotor with the liquid autobalancing device under action of external friction forces
Influence of external friction forces on rotation of the rotor with the liquid autobalancing device is considered. The liquid in the balancing chamber at stationary movement rotates together with the rotor as solids. Analytical expressions for deflection of the shaft, unbalance of the system and the necessary rotating moment from the engine providing rotation with set speed are received
Stationary rotation stability of unbalanced rotor with autobalancing device with liquid on flexible shaft
The condition of rotor rotation stability with liquid autobalancing device consisting of chamber, float and incompressible homogeneous liquid filling the space between them has been obtained. The restoring force and forces of internal and external friction take effect on the rotor. The latter depend linearly respectively on strain rate and absolute velocity of rotor connection point to the shaf
Investigation of Input Signal Curve Effect on Formed Pulse of Hydraulic-Powered Pulse Machine
Well drilling machines should have as high efficiency factor as it is possible. This work proposes factors that are affected by change of input signal pulse curve. A series of runs are conducted on mathematical model of hydraulic-powered pulse machine. From this experiment, interrelations between input pulse curve and construction parameters are found. Results of conducted experiment are obtained with the help of the mathematical model, which is created in Simulink Matlab
Optical and photoelectron spectroscopy studies of KPb2Cl 5 and RbPb2Cl5 laser crystals
The paper presents the results of experimental study of electronic structure of RbPb2Cl5 and KPb2Cl5 laser crystals performed by the optical and photoelectron spectroscopy methods. On the basis of the optical absorption and low-temperature reflection spectra of these crystals we have determined the energy positions of the edges of the low-energy tail of the host absorption, the positions of the first excitonic absorption peaks, and exciton binding energies. The bandgap widths of these crystals at 8 K were estimated as Eg = 4.83 and 4.79 eV, respectively. Qualitative and quantitative analysis of RbPb2Cl 5 and KPb2Cl5 crystals were made on the basis of the core states photoelectron spectra. The elemental composition of the (0 0 1) surfaces of the crystals, the chemical state of the host atoms, the electronic structure of the valence band of the crystals were discussed on the basis on the spectroscopic data. Β© 2012 Elsevier B.V. All rights reserved
Relationship Between Indices of Oxidative Stress, Endothelial Dysfunction and Chaperone Activity and the Severity of Coronary Atherosclerosis
The aim of this research was to study the relationship between the indices of oxidative stress, endothelial dysfunction and chaperone activity of proteins with the severity of coronary atherosclerosis. In patients with coronary heart disease, we found gender-related differences in the severity of coronary atherosclerosis. Significant differences in the indices of oxidative stress, endothelial dysfunction and chaperone activity were revealed depending on the severity of coronary atherosclerosis and the type of atherosclerotic lesion. The determination of studied parameters can serve as a good indicator of the severity of coronary atherosclerosis
Conformation of surface exposed N-terminus part of bacteriorhodopsin studied by transferred NOE technique
AbstractInteraction of the monoclonal antibody A5 raised against native bacteriorhodopsin (BR) with the synthetic peptide pGlu1-Ala-Gln-Ile-Thr-Gly-Arg7-NH2, corresponding to the amino acid sequence 1β7 was studied by transferred nuclear Overhauser effect (TRNOE) spectroscopy. The denaturing reagents and the specially designed pulse sequences which eliminate broad signals from the TRNOE spectra were used to favour evaluation of the TRNOE peaks. On the basis of the data obtained, the conformation of peptide bound with A5 was calculated. A model of the mutual arrangement of bacteriorhodopsin N-terminus and the first transmembrane Ξ±-helical segment 8β32 was proposed
Verification of zinc role in pathophysiology of chronic obstructive pulmonary disease
Aim. Determination of the level of zinc and its fractions, as well as the enzyme neutrophilic elastase and albumin in persons suffering from chronic obstructive pulmonary disease (COPD), as well as smoking actively and passively. Materials and methods. The study involved 30 patients with a diagnosis of COPD and 90 healthy persons (60 of them smoking at the present time, 30 - no) who underwent spirometry and determination of zinc levels and its pools, albumin, and neutrophil elastase. All data are subject to statistical processing. Results. It is determined that the studied parameters differ significantly in the groups of smokers with COPD, healthy smokers and non-smokers, and correlate with the volume of forced exhalation for 1 second as a percentage of the due. Conclusion. The revealed regularities make it possible to consider the indicator "share of bound zinc fraction" introduced in the study as a screening criterion in diagnosing COPD in smokers
ΠΠ΅ΠΉΡΡΠ²ΠΈΠ΅ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ²ΠΈΡΡΡΠ½ΡΡ ΠΌΠΈΠ ΠΠ Π½Π° Π²ΡΡΠ°Π±ΠΎΡΠΊΡ ΡΠΈΡΠΎΠΊΠΈΠ½ΠΎΠ² in vitro
Objectives. To evaluate the dynamics of the expression level of IL-1Ξ² and IL-28Ξ² (IFN-Ξ»3) genes as a result of complex knockdown of some cellular genes, whose expression products play an important role in the reproduction of the influenza virus.Methods. Following the collection of virus-containing liquid and cell lysate within three days from the moment of transfection and infection, the intensity of viral reproduction was assessed using the cytopathic effect titration method. The concentration of viral ribonucleic acid (vRNA) and change in the expression of IL-1Ξ² and IL-28Ξ² (IFN-Ξ»3) were determined by real-time reverse transcription quantitative polymerase chain reaction (real-time RT-qPCR). The nonparametric MannβWhitney test was used to statistically calculate significant differences between groups.Results. The use of each small interfering ribonucleic acid (siRNA) complex led to a decrease in viral reproduction on the first day at the multiplicity of infection (MOI) of 0.001. The use of complex A (FLT4.2 + Nup98.1) and D (FLT4.2 + Nup98.1 + Nup205) led to a decrease in viral titer by 2.8 lgTCID50/mL and by 2.1 lgTCID50/mL relative to the use of nonspecific L2 siRNA and viral control (p β€ 0.05). Transfection of complexes B (Nup98.1 + Nup205) and C (FLT4.2 + Nup205) also reduced the viral titer by 1.5 lgTCID50/mL and 1.8 lgTCID50/mL relative to nonspecific L2 siRNA and viral control (p β€ 0.05). When conducting real-time RT-qPCR, a significant decrease in the concentration of viral RNA was also noted. When using complexes B, C, and D, the concentration of vRNA decreased on the first day by 14.5, 4.1, and 15 times, respectively. On the second day, a decrease in vRNA was observed in cells with B and D complexes by 17.1 and 18.3 times (p β€ 0.05). Along with a decrease in the viral titer and vRNA, an increase in the expression of the IL-1Ξ² and IL-28Ξ² genes was observed on the first day when using all siRNA complexes relative to nonspecific and viral controls (p β€ 0.05). On the second day, an increase was also observed in cells with A and D complexes, while on the third day, there was an increase in the expression of these genes in cells with complex D (p β€ 0.05).Conclusions. The use of siRNA complexes is shown to have a pronounced antiviral effect while simultaneously suppressing the activity of cellular genes (FLT4, Nup98 and Nup205). In parallel, the transfection of complexes that block the formation of expression products necessary for viral reproduction is demonstrated to lead to an increase in the level of expression of the IL-1Ξ² and IL-28Ξ² genes. These results indicate not only that the use of siRNA has antiviral activity, but also immunomodulatory activity, which can contribute to a more effective immune response of the body.Π¦Π΅Π»ΠΈ. ΠΡΠ΅Π½ΠΈΡΡ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΡ ΡΡΠΎΠ²Π½Ρ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ Π³Π΅Π½ΠΎΠ² IL-1Ξ² ΠΈ IL-28Ξ² (IFN-Ξ»3) Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠ³ΠΎ Π½ΠΎΠΊΠ΄Π°ΡΠ½Π° Π½Π΅ΠΊΠΎΡΠΎΡΡΡ
ΠΊΠ»Π΅ΡΠΎΡΠ½ΡΡ
Π³Π΅Π½ΠΎΠ², ΡΡΠΈ ΠΏΡΠΎΠ΄ΡΠΊΡΡ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ ΠΈΠ³ΡΠ°ΡΡ Π²Π°ΠΆΠ½ΡΡ ΡΠΎΠ»Ρ Π² ΡΠ΅ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠΈ Π²ΠΈΡΡΡΠ° Π³ΡΠΈΠΏΠΏΠ°.ΠΠ΅ΡΠΎΠ΄Ρ. ΠΠΈΡΡΡΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΡΡ ΠΆΠΈΠ΄ΠΊΠΎΡΡΡ ΠΈ ΠΊΠ»Π΅ΡΠΎΡΠ½ΡΠΉ Π»ΠΈΠ·Π°Ρ ΠΎΡΠ±ΠΈΡΠ°Π»ΠΈ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ 3-Ρ
Π΄Π½Π΅ΠΉ Ρ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΡΡΠ°Π½ΡΡΠ΅ΠΊΡΠΈΠΈ ΠΈ Π·Π°ΡΠ°ΠΆΠ΅Π½ΠΈΡ ΠΈ ΠΎΡΠ΅Π½ΠΈΠ²Π°Π»ΠΈ ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΡΡΡ Π²ΠΈΡΡΡΠ½ΠΎΠΉ ΡΠ΅ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠΈ ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ ΡΠΈΡΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎ ΡΠΈΡΠΎΠΏΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΌΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ. ΠΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡ Π²ΠΈΡΡΡΠ½ΠΎΠΉ ΡΠΈΠ±ΠΎΠ½ΡΠΊΠ»Π΅ΠΈΠ½ΠΎΠ²ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ (Π²Π ΠΠ) ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ IL-1Ξ² ΠΈ IL-28Ξ² (IFN-Ξ»3) ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠΉ ΡΡΠ°Π½ΡΠΊΡΠΈΠΏΡΠΈΠΈ ΠΈ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ°Π·Π½ΠΎΠΉ ΡΠ΅ΠΏΠ½ΠΎΠΉ ΡΠ΅Π°ΠΊΡΠΈΠΈ Π² ΡΠ΅ΠΆΠΈΠΌΠ΅ ΡΠ΅Π°Π»ΡΠ½ΠΎΠ³ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ (ΠΠ’-ΠΠ¦Π -Π Π). ΠΠ»Ρ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈ Π·Π½Π°ΡΠΈΠΌΡΡ
ΡΠ°Π·Π»ΠΈΡΠΈΠΉ ΠΌΠ΅ΠΆΠ΄Ρ Π³ΡΡΠΏΠΏΠ°ΠΌΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈ Π½Π΅ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΊΡΠΈΡΠ΅ΡΠΈΠΉ ΠΠ°Π½Π½Π°-Π£ΠΈΡΠ½ΠΈ.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ° ΠΌΠ°Π»ΡΡ
ΠΈΠ½ΡΠ΅ΡΡΠ΅ΡΠΈΡΡΡΡΠΈΡ
Π ΠΠ (ΠΌΠΈΠ ΠΠ) ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΠ»ΠΎ ΠΊ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΡ Π²ΠΈΡΡΡΠ½ΠΎΠΉ ΡΠ΅ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠΈ Π½Π° 1-Π΅ ΡΡΡΠΊΠΈ ΠΏΡΠΈ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΡΡΠΈ Π·Π°ΡΠ°ΠΆΠ΅Π½ΠΈΡ 0.001. ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ² A (FLT4.2 + Nup98.1) ΠΈ D (FLT4.2 + Nup98.1 + Nup205) ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΠ»ΠΎ ΠΊ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΡ Π²ΠΈΡΡΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΡΠ° Π½Π° 2.8 lgΠ’Π¦Π50/ΠΌΠ» ΠΈ Π½Π° 2.1 lgΠ’Π¦Π50/ΠΌΠ» ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ Π½Π΅ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠΈΠ ΠΠ L2 ΠΈ Π²ΠΈΡΡΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ (Ρ β€ 0.05). ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΡΡΠ°Π½ΡΡΠ΅ΠΊΡΠΈΠΈ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ² B (Nup98.1 + Nup205) ΠΈ C (FLT4.2 + Nup205) Π²ΠΈΡΡΡΠ½ΡΠΉ ΡΠΈΡΡ ΡΠ°ΠΊΠΆΠ΅ ΡΠ½ΠΈΠΆΠ°Π»ΡΡ Π½Π° 1.5 lgΠ’Π¦Π50/ΠΌΠ» ΠΈ 1.8 lgΠ’Π¦Π50/ΠΌΠ» ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π΅ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠΈΠ ΠΠ L2 ΠΈ Π²ΠΈΡΡΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ (Ρ β€ 0.05). ΠΡΠΈ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ ΠΠ’-ΠΠ¦Π -Π Π ΡΠ°ΠΊΠΆΠ΅ Π±ΡΠ»ΠΎ ΠΎΡΠΌΠ΅ΡΠ΅Π½ΠΎ Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½ΠΎΠ΅ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ Π²Π ΠΠ. ΠΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ² B, C ΠΈ D ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡ Π²Π ΠΠ ΡΠ½ΠΈΠΆΠ°Π»Π°ΡΡ Π½Π° 1-Π΅ ΡΡΡΠΊΠΈ Π² 14.5, 4.1 ΠΈ 15.0 ΡΠ°Π· ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ. ΠΠ° 2-Π΅ ΡΡΡΠΊΠΈ Π² ΠΊΠ»Π΅ΡΠΊΠ°Ρ
Ρ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ°ΠΌΠΈ B ΠΈ D Π½Π°Π±Π»ΡΠ΄Π°Π»ΠΎΡΡ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ Π²Π ΠΠ Π² 17.1 ΠΈ 18.3 ΡΠ°Π· (Ρ β€ 0.05). ΠΠ°ΡΡΠ΄Ρ ΡΠΎ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π²ΠΈΡΡΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΡΠ° ΠΈ Π²Π ΠΠ Π½Π°Π±Π»ΡΠ΄Π°Π»ΠΎΡΡ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ Π³Π΅Π½ΠΎΠ² IL-1Ξ² ΠΈ IL-28Ξ² Π½Π° 1-Π΅ ΡΡΡΠΊΠΈ ΠΏΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ Π²ΡΠ΅Ρ
ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ² ΠΌΠΈΠ ΠΠ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π΅ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈ Π²ΠΈΡΡΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ (Ρ β€ 0.05). ΠΠ° 2-Π΅ ΡΡΡΠΊΠΈ ΡΠ°ΠΊΠΆΠ΅ Π½Π°Π±Π»ΡΠ΄Π°Π»ΠΎΡΡ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ Π² ΠΊΠ»Π΅ΡΠΊΠ°Ρ
Ρ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ°ΠΌΠΈ A ΠΈ D, Π° Π½Π° ΡΡΠ΅ΡΡΠΈ β Π² ΠΊΠ»Π΅ΡΠΊΠ°Ρ
Ρ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠΌ D (Ρ β€0.05).ΠΡΠ²ΠΎΠ΄Ρ. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ, ΡΡΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ² ΠΌΠΈΠ ΠΠ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΠΎΠΌΡ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ²ΠΈΡΡΡΠ½ΠΎΠΌΡ ΡΡΡΠ΅ΠΊΡΡ ΠΏΡΠΈ ΠΎΠ΄Π½ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΌ ΠΏΠΎΠ΄Π°Π²Π»Π΅Π½ΠΈΠΈ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΊΠ»Π΅ΡΠΎΡΠ½ΡΡ
Π³Π΅Π½ΠΎΠ² (FLT4, Nup98 ΠΈ Nup205). ΠΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ Ρ ΡΡΠΈΠΌ Π±ΡΠ»ΠΎ Π²ΡΡΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΈ ΡΡΠ°Π½ΡΡΠ΅ΠΊΡΠΈΠΈ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ², Π±Π»ΠΎΠΊΠΈΡΡΡΡΠΈΡ
ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ² ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ, Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΡΡ
Π΄Π»Ρ Π²ΠΈΡΡΡΠ½ΠΎΠΉ ΡΠ΅ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠΈ, ΠΏΠΎΠ²ΡΡΠ°Π΅ΡΡΡ ΡΡΠΎΠ²Π΅Π½Ρ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ Π³Π΅Π½ΠΎΠ² IL-1Ξ² ΠΈ IL-28Ξ². ΠΠ°Π½Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΡΡ ΠΎ ΡΠΎΠΌ, ΡΡΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΠ΅ ΠΌΠΈΠ ΠΠ ΠΎΠ±Π»Π°Π΄Π°ΡΡ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ²ΠΈΡΡΡΠ½ΠΎΠΉ, Π½ΠΎ ΡΠ°ΠΊΠΆΠ΅ ΠΈ ΠΈΠΌΠΌΡΠ½ΠΎΠΌΠΎΠ΄ΡΠ»ΠΈΡΡΡΡΠ΅ΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡΡ, ΡΡΠΎ ΡΠΏΠΎΡΠΎΠ±ΡΡΠ²ΡΠ΅Ρ Π±ΠΎΠ»Π΅Π΅ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠΌΡ ΠΈΠΌΠΌΡΠ½Π½ΠΎΠΌΡ ΠΎΡΠ²Π΅ΡΡ ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠ°
Ex vivo ΠΏΠ΅ΡΡΡΠ·ΠΈΡ Π΄ΠΎΠ½ΠΎΡΡΠΊΠΈΡ Π»Π΅Π³ΠΊΠΈΡ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΠΎΠ³ΠΎ ΡΠ°ΡΡΠ²ΠΎΡΠ° Ρ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΉ ΠΎΡΡΠΎΡΠΎΠΏΠΈΡΠ΅cΠΊΠΎΠΉ Π»Π΅Π²ΠΎΡΡΠΎΡΠΎΠ½Π½Π΅ΠΉ ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠ΅ΠΉ Π»Π΅Π³ΠΊΠΎΠ³ΠΎ (ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅)
The continued unavailability of adequate organs for transplantation to meet the existing demand has resulted in a major challenge in transplantology. This is especially felt in lung transplantation (LTx). LTx is the only effective method of treatment for patients with end-stage lung diseases. Normothermic ex vivo lung perfusion (EVLP) has been proposed to increase the number of donor organs suitable for transplant β EVLP has proven itself in a number of clinical trials. The ability to restore suboptimal donor lungs, previously considered unsuitable for transplantation, can improve organ functionality, and thus increase the number of lung transplants. However, widespread implementation of ex vivo perfusion is associated with high financial costs for consumables and perfusate.Objective: to test the developed solution on an ex vivo lung perfusion model, followed by orthotopic LT under experimental conditions.Materials and methods. The experiment included lung explantation stages, static hypothermic storage, EVLP and orthotopic left LTx. Perfusion was performed in a closed perfusion system. We used our own made human albumin-based perfusion solution as perfusate. Perfusion lasted for 2 hours, and evaluation was carried out every 30 minutes. In all cases, static hypothermic storage after perfusion lasted for 4 hours. The orthotopic single-lung transplantation procedure was performed using assisted circulation, supplemented by membrane oxygenation. Postoperative follow-up was 2 hours, after which the experimental animal was euthanized.Results. Respiratory index before lung explantation was 310 Β± 40 mmHg. The PaO2/FiO2 ratio had positive growth dynamics throughout the entire EVLP procedure. Oxygenation index was 437 Β± 25 mm Hg after 120 minutes of perfusion. Throughout the entire EVLP procedure, there was a steady decrease in pulmonary vascular resistance (PVR). Initial PVR was 300 Β± 100 dynΓs/cm5; throughout the EVLP, PVR tended to fall, reaching 38,5 Β± 12 dynΓs/cm5 at the end of perfusion.Conclusion. A safe and effective EVLP using our perfusate is possible. The developed orthotopic left lung transplantation protocol under circulatory support conditions, supplemented by membrane oxygenation, showed it is efficient and reliable.ΠΠ° ΡΠ΅Π³ΠΎΠ΄Π½ΡΡΠ½ΠΈΠΉ Π΄Π΅Π½Ρ Π² ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠΎΠ»ΠΎΠ³ΠΈΠΈ Π΄Π΅ΡΠΈΡΠΈΡ Π΄ΠΎΠ½ΠΎΡΡΠΊΠΈΡ
ΠΎΡΠ³Π°Π½ΠΎΠ² ΠΎΡΡΠ°Π΅ΡΡΡ Π³Π»Π°Π²Π½ΠΎΠΉ ΠΏΡΠΎΠ±Π»Π΅ΠΌΠΎΠΉ. ΠΡΠΎΠ±Π΅Π½Π½ΠΎ ΡΡΠΎ ΠΎΡΡΡΠ°Π΅ΡΡΡ Π² ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠΈ Π»Π΅Π³ΠΊΠΈΡ
. Π’ΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΡ Π»Π΅Π³ΠΊΠΈΡ
ΡΠ²Π»ΡΠ΅ΡΡΡ Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½ΡΠΌ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΠΌ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π»Π΅ΡΠ΅Π½ΠΈΡ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ ΡΠ΅ΡΠΌΠΈΠ½Π°Π»ΡΠ½ΡΠΌΠΈ ΡΡΠ°Π΄ΠΈΡΠΌΠΈ ΡΠ΅ΡΠΏΠΈΡΠ°ΡΠΎΡΠ½ΠΎΠΉ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΡΡΠΈ. Π‘ ΡΠ΅Π»ΡΡ ΡΠ°ΡΡΠΈΡΠ΅Π½ΠΈΡ ΠΏΡΠ»Π° ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΡ
Π΄ΠΎΠ½ΠΎΡΠΎΠ² ΠΏΡΠ΅Π΄Π»Π°Π³Π°Π΅ΡΡΡ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡ Π½ΠΎΡΠΌΠΎΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ex vivo ΠΏΠ΅ΡΡΡΠ·ΠΈΠΈ, Ρ
ΠΎΡΠΎΡΠΎ Π·Π°ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Π²ΡΠ΅ΠΉ ΡΠ΅Π±Ρ Π² ΡΡΠ΄Π΅ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ. ΠΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ Π²ΠΎΡΡΡΠ°Π½Π°Π²Π»ΠΈΠ²Π°ΡΡ ΡΡΠ±ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΡΠ΅ Π΄ΠΎΠ½ΠΎΡΡΠΊΠΈΠ΅ Π»Π΅Π³ΠΊΠΈΠ΅, ΡΡΠΈΡΠ°Π²ΡΠΈΠ΅ΡΡ ΡΠ°Π½Π΅Π΅ Π½Π΅ ΠΏΡΠΈΠ³ΠΎΠ΄Π½ΡΠΌΠΈ Π΄Π»Ρ ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠΈ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠ»ΡΡΡΠΈΡΡ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΠΎΡΠ³Π°Π½Π° ΠΈ ΡΠ΅ΠΌ ΡΠ°ΠΌΡΠΌ ΡΠ²Π΅Π»ΠΈΡΠΈΡΡ ΡΠΈΡΠ»ΠΎ ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠΉ Π»Π΅Π³ΠΊΠΈΡ
. ΠΠ΄Π½Π°ΠΊΠΎ ΡΠΈΡΠΎΠΊΠΎΠ΅ Π²Π½Π΅Π΄ΡΠ΅Π½ΠΈΠ΅ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ex vivo ΠΏΠ΅ΡΡΡΠ·ΠΈΠΈ ΡΠΎΠΏΡΡΠΆΠ΅Π½ΠΎ Ρ Π²ΡΡΠΎΠΊΠΈΠΌΠΈ ΡΠΈΠ½Π°Π½ΡΠΎΠ²ΡΠΌΠΈ Π·Π°ΡΡΠ°ΡΠ°ΠΌΠΈ Π½Π° ΡΠ°ΡΡ
ΠΎΠ΄Π½ΡΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΠΏΠ΅ΡΡΡΠ·ΠΈΠΎΠ½Π½ΡΠΉ ΡΠ°ΡΡΠ²ΠΎΡ.Π¦Π΅Π»Ρ: Π°ΠΏΡΠΎΠ±ΠΈΡΠΎΠ²Π°ΡΡ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΡΠΉ ΡΠ°ΡΡΠ²ΠΎΡ Π½Π° ΠΌΠΎΠ΄Π΅Π»ΠΈ ex vivo ΠΏΠ΅ΡΡΡΠ·ΠΈΠΈ Π΄ΠΎΠ½ΠΎΡΡΠΊΠΈΡ
Π»Π΅Π³ΠΊΠΈΡ
Ρ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΉ ΠΎΡΡΠΎΡΠΎΠΏΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠ΅ΠΉ Π»Π΅Π³ΠΊΠΎΠ³ΠΎ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ
ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°.ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½Ρ Π²ΠΊΠ»ΡΡΠ°Π» ΡΡΠ°Π΄ΠΈΠΈ ΡΠΊΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠΈ Π»Π΅Π³ΠΊΠΈΡ
, ΡΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π³ΠΈΠΏΠΎΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠ΅ Ρ
ΡΠ°Π½Π΅Π½ΠΈΠ΅, ΠΏΡΠΎΡΠ΅Π΄ΡΡΡ Π½ΠΎΡΠΌΠΎΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ex vivo ΠΏΠ΅ΡΡΡΠ·ΠΈΠΈ ΠΈ ΠΎΡΡΠΎΡΠΎΠΏΠΈΡΠ΅ΡΠΊΡΡ Π»Π΅Π²ΠΎΡΡΠΎΡΠΎΠ½Π½ΡΡ ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΡ. ΠΠ΅ΡΡΡΠ·ΠΈΡ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»Π°ΡΡ Π² Π·Π°ΠΌΠΊΠ½ΡΡΠΎΠΌ ΠΊΠΎΠ½ΡΡΡΠ΅. Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΏΠ΅ΡΡΡΠ·Π°ΡΠ° ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΠΉ ΠΏΠ΅ΡΡΡΠ·ΠΈΠΎΠ½Π½ΡΠΉ ΡΠ°ΡΡΠ²ΠΎΡ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π°Π»ΡΠ±ΡΠΌΠΈΠ½Π° ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ°. ΠΡΠ΅ΠΌΡ ΠΏΠ΅ΡΡΡΠ·ΠΈΠΈ ΡΠΎΡΡΠ°Π²Π»ΡΠ»ΠΎ 2 ΡΠ°ΡΠ°, ΠΎΡΠ΅Π½ΠΊΠ° ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»Π°ΡΡ ΠΊΠ°ΠΆΠ΄ΡΠ΅ 30 ΠΌΠΈΠ½ΡΡ. ΠΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π³ΠΈΠΏΠΎΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Ρ
ΡΠ°Π½Π΅Π½ΠΈΡ ΠΏΠΎΡΠ»Π΅ ΠΏΠ΅ΡΡΡΠ·ΠΈΠΈ ΡΠΎΡΡΠ°Π²ΠΈΠ» 4 ΡΠ°ΡΠ° Π²ΠΎ Π²ΡΠ΅Ρ
Π½Π°Π±Π»ΡΠ΄Π΅Π½ΠΈΡΡ
. ΠΡΠΎΡΠ΅Π΄ΡΡΡ ΠΎΡΡΠΎΡΠΎΠΏΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΠ΄Π½ΠΎΠ»Π΅Π³ΠΎΡΠ½ΠΎΠΉ ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠΈ Π²ΡΠΏΠΎΠ»Π½ΡΠ»ΠΈ Ρ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Π²ΡΠΏΠΎΠΌΠΎΠ³Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΊΡΠΎΠ²ΠΎΠΎΠ±ΡΠ°ΡΠ΅Π½ΠΈΡ, Π΄ΠΎΠΏΠΎΠ»Π½Π΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅ΠΌΠ±ΡΠ°Π½Π½ΠΎΠΉ ΠΎΠΊΡΠΈΠ³Π΅Π½Π°ΡΠΈΠ΅ΠΉ. ΠΠ΅ΡΠΈΠΎΠ΄ Π½Π°Π±Π»ΡΠ΄Π΅Π½ΠΈΡ Π² ΠΏΠΎΡΠ»Π΅ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΌ ΠΏΠ΅ΡΠΈΠΎΠ΄Π΅ ΡΠΎΡΡΠ°Π²Π»ΡΠ» 2 ΡΠ°ΡΠ°, ΠΏΠΎΡΠ»Π΅ ΡΠ΅Π³ΠΎ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»Π°ΡΡ ΡΠ²ΡΠ°Π½Π°Π·ΠΈΡ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΆΠΈΠ²ΠΎΡΠ½ΠΎΠ³ΠΎ.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ ΡΠ΅ΡΠΏΠΈΡΠ°ΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΈΠ½Π΄Π΅ΠΊΡΠ° Π΄ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΡΠΊΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠΈ Π΄ΠΎΠ½ΠΎΡΡΠΊΠΈΡ
Π»Π΅Π³ΠΊΠΈΡ
ΡΠΎΡΡΠ°Π²Π»ΡΠ» 310 Β± 40 ΠΌΠΌ ΡΡ. ΡΡ. ΠΠ° ΠΏΡΠΎΡΡΠΆΠ΅Π½ΠΈΠΈ Π²ΡΠ΅ΠΉ ΠΏΡΠΎΡΠ΅Π΄ΡΡΡ ex vivo ΠΏΠ΅ΡΡΡΠ·ΠΈΠΈ ΠΎΡΠΌΠ΅ΡΠ°Π»Π°ΡΡ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½Π°Ρ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° ΡΠΎΡΡΠ° PaΠ2/FiO2. Π‘ΠΏΡΡΡΡ 120 ΠΌΠΈΠ½ΡΡ ΠΏΠ΅ΡΡΡΠ·ΠΈΠΈ ΠΈΠ½Π΄Π΅ΠΊΡ ΠΎΠΊΡΠΈΠ³Π΅Π½Π°ΡΠΈΠΈ ΡΠΎΡΡΠ°Π²ΠΈΠ» 437 Β± 25 ΠΌΠΌ ΡΡ. ΡΡ. ΠΡΡ
ΠΎΠ΄Π½ΠΎ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ Π»Π΅Π³ΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠΎΡΡΠ΄ΠΈΡΡΠΎΠ³ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ (ΠΠ‘Π‘) ΡΠΎΡΡΠ°Π²Π»ΡΠ» 300 Β± 100 ΠΠΈΠ½ΓΡ/ΡΠΌ5, Π½Π° ΠΏΡΠΎΡΡΠΆΠ΅Π½ΠΈΠΈ Π²ΡΠ΅ΠΉ ex vivo ΠΏΠ΅ΡΡΡΠ·ΠΈΠΈ ΠΏΡΠΎΡΠ»Π΅ΠΆΠΈΠ²Π°Π»Π°ΡΡ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° ΠΊ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ ΠΠ‘Π‘; Π½Π° ΠΎΠΊΠΎΠ½ΡΠ°Π½ΠΈΠ΅ ΠΏΠ΅ΡΡΡΠ·ΠΈΠΈ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ ΠΠ‘Π‘ ΡΠΎΡΡΠ°Π²ΠΈΠ» 38,5 Β± 12 ΠΠΈΠ½ΓΡ/ΡΠΌ5.ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅. ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΠΉ ΠΈ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠΉ ΠΏΡΠΎΡΠ΅Π΄ΡΡΡ Π½ΠΎΡΠΌΠΎΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ex vivo ΠΏΠ΅ΡΡΡΠ·ΠΈΠΈ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΎΡΠ΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠ΅ΡΡΡΠ·ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΡΠ°ΡΡΠ²ΠΎΡΠ°. Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΡΠΉ ΠΏΡΠΎΡΠΎΠΊΠΎΠ» ΠΎΡΡΠΎΡΠΎΠΏΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠΈ Π»Π΅Π²ΠΎΠ³ΠΎ Π»Π΅Π³ΠΊΠΎΠ³ΠΎ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ
Π²ΡΠΏΠΎΠΌΠΎΠ³Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΊΡΠΎΠ²ΠΎΠΎΠ±ΡΠ°ΡΠ΅Π½ΠΈΡ, Π΄ΠΎΠΏΠΎΠ»Π½Π΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅ΠΌΠ±ΡΠ°Π½Π½ΠΎΠΉ ΠΎΠΊΡΠΈΠ³Π΅Π½Π°ΡΠΈΠ΅ΠΉ, ΠΏΠΎΠΊΠ°Π·Π°Π» ΡΠ²ΠΎΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΈ Π½Π°Π΄Π΅ΠΆΠ½ΠΎΡΡΡ
ΠΡΠ»ΠΎΠΆΠ½Π΅Π½ΠΈΡ ΡΠ°Π½Π½Π΅Π³ΠΎ ΠΏΠΎΡΠ»Π΅ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄Π° ΠΏΠΎΡΠ»Π΅ ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠΈ Π»Π΅Π³ΠΊΠΈΡ
Lung transplantation is the final treatment option for end-stage lung disease when all possible conservative treatment is exhausted. According to the International Society for Heart and Lung transplantation Registry, more than 60000 lung transplantations have been performed worldwide. The early post-transplant period following lung transplantation remains critical because of numerous complications. These complications can be divided into several groups. These are surgical complications, primary graft dysfunction and acute rejection, infection, cardiovascular, abdominal and renal disorder. This complications may result in significant morbidity, mortality and limit short and long-term survival. The aim of this review is to describe the main postoperative complications in first month after lung transplantation in the world practice.Π’ΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΡ Π»Π΅Π³ΠΊΠΈΡ
ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠΎΡΠ»Π΅Π΄Π½ΠΈΠΌ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΠΌ Π²Π°ΡΠΈΠ°Π½ΡΠΎΠΌ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ ΡΠ΅ΡΠΌΠΈΠ½Π°Π»ΡΠ½ΡΡ
ΡΡΠ°Π΄ΠΈΠΉ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ Π»Π΅Π³ΠΊΠΈΡ
Π² ΡΠ»ΡΡΠ°Π΅ Π½Π΅ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΊΠΎΠ½ΡΠ΅ΡΠ²Π°ΡΠΈΠ²Π½ΠΎΠΉ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ. Π‘ΠΎΠ³Π»Π°ΡΠ½ΠΎ ΡΠ΅Π³ΠΈΡΡΡΡ ΠΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΎΠ±ΡΠ΅ΡΡΠ²Π° ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠΈ ΡΠ΅ΡΠ΄ΡΠ° ΠΈ Π»Π΅Π³ΠΊΠΈΡ
, Π² ΠΌΠΈΡΠ΅ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΎ Π±ΠΎΠ»Π΅Π΅ 60 000 ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠΉ Π»Π΅Π³ΠΊΠΈΡ
. Π’ΡΠΆΠ΅ΡΡΡ ΠΏΠΎΡΠ»Π΅ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄Π° ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½Π° Π²ΡΡΠΎΠΊΠΎΠΉ ΡΠ°ΡΡΠΎΠΉ ΠΏΠΎΡΠ»Π΅ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΎΠ½Π½ΡΡ
ΠΎΡΠ»ΠΎΠΆΠ½Π΅Π½ΠΈΠΉ. ΠΡΠ»ΠΎΠΆΠ½Π΅Π½ΠΈΡ ΠΏΠΎΡΠ»Π΅ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄Π° ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΡΠ°Π·Π΄Π΅Π»Π΅Π½Ρ Π½Π° Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ Π³ΡΡΠΏΠΏ: Ρ
ΠΈΡΡΡΠ³ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΎΡΠ»ΠΎΠΆΠ½Π΅Π½ΠΈΡ, ΠΏΠ΅ΡΠ²ΠΈΡΠ½Π°Ρ Π΄ΠΈΡΡΡΠ½ΠΊΡΠΈΡ ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠ° ΠΈ ΠΎΡΡΡΠΎΠ΅ ΠΎΡΡΠΎΡΠΆΠ΅Π½ΠΈΠ΅, ΡΠ΅ΡΠ΄Π΅ΡΠ½ΠΎ-ΡΠΎΡΡΠ΄ΠΈΡΡΡΠ΅, Π°Π±Π΄ΠΎΠΌΠΈΠ½Π°Π»ΡΠ½ΡΠ΅ ΠΈ ΠΏΠΎΡΠ΅ΡΠ½ΡΠ΅ ΠΎΡΠ»ΠΎΠΆΠ½Π΅Π½ΠΈΡ. Π¦Π΅Π»Ρ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΎΠ±Π·ΠΎΡΠ° Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΡ - Π°Π½Π°Π»ΠΈΠ· ΠΎΡΠ½ΠΎΠ²Π½ΡΡ
ΠΎΡΠ»ΠΎΠΆΠ½Π΅Π½ΠΈΠΉ Π² ΡΠ°Π½Π½Π΅ΠΌ ΠΏΠΎΡΠ»Π΅ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΌ ΠΏΠ΅ΡΠΈΠΎΠ΄Π΅ ΠΏΠΎΡΠ»Π΅ ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠΈ Π»Π΅Π³ΠΊΠΈΡ
Π² ΠΌΠΈΡΠΎΠ²ΠΎΠΉ ΠΏΡΠ°ΠΊΡΠΈΠΊΠ΅
- β¦